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Abstract

Large-scale probabilistic knowledge bases are becoming increasingly important in academia and industry. They are
continuously extended with new data, powered by modern information extraction tools that associate probabilities
with knowledge base facts. The state of the art to store and process such data is founded on probabilistic databases.
Many systems based on probabilistic databases, however, still have certain semantic deficiencies, which limit their
potential applications. We revisit the semantics of probabilistic databases, and argue that the closed-world assumption
of probabilistic databases, i.e., the assumption that facts not appearing in the database have the probability zero,
conflicts with the everyday use of large-scale probabilistic knowledge bases. To address this discrepancy, we propose
open-world probabilistic databases, as a new probabilistic data model. In this new data model, the probabilities
of unknown facts, also called open facts, can be assigned any probability value from a default probability interval.
Our analysis entails that our model aligns better with many real-world tasks such as query answering, relational
learning, knowledge base completion, and rule mining. We make various technical contributions. We show that
the data complexity dichotomy, between polynomial time and #P, for evaluating unions of conjunctive queries on
probabilistic databases can be lifted to our open-world model. This result is supported by an algorithm that computes
the probabilities of the so-called safe queries efficiently. Based on this algorithm, we prove that evaluating safe
queries is in linear time for probabilistic databases, under reasonable assumptions. This remains true in open-world
probabilistic databases for a more restricted class of safe queries. We extend our data complexity analysis beyond
unions of conjunctive queries, and obtain a host of complexity results for both classical and open-world probabilistic
databases. We conclude our analysis with an in-depth investigation of the combined complexity in the respective
models.

Keywords: knowledge bases, probabilistic databases, semantics, closed-world assumption, open-world assumption,
inference, credal sets, learning, data complexity, dichotomy, lifted inference

1. Introduction

Driven by the need to learn from vast amount of text data, efforts throughout information extraction, natural
language processing (e.g., question answering), relational learning, knowledge representation and reasoning, and
databases are coming together to build large-scale knowledge bases and reason over them. Academic systems such
as NELL [1], DeepDive [2], Reverb [3], and YAGO [4] continuously crawl the Web to extract structured information.
Industry projects such as Microsoft’s Probase [5], or Google’s Knowledge Vault [6] similarly learn structured data
from text, and thus populate their databases with millions of entities and billions of facts. Thus, research on large-
scale knowledge bases serves as an important frontier for artificial intelligence (AI).

Systems such as DeepDive have been used by scientists to build knowledge bases of gene interactions, paleobiol-
ogy, and geoscience, all by reading scientific publications and extracting structured knowledge [7, 8]. One of the most
visible applications of these probabilistic knowledge bases is in search engines (see, e.g., Google search results), i.e.,
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the standard list of relevant web pages is often augmented with a table of structured data that pertains to the search
query, which is clearly linked to the underlying knowledge base.

Knowledge bases contain data which is necessarily uncertain. To go from the raw text to structured data, infor-
mation extraction systems employ a sequence of statistical machine learning techniques, from part-of-speech tagging
until relation extraction [9]. For knowledge-base completion – the task of deriving new facts from existing knowledge
– statistical relational learning algorithms make use of embeddings [10, 11] or probabilistic rules [12, 13]. In both
settings, the output is a predicted fact with a probability, or confidence, value. It is therefore common to interpret such
knowledge through a probabilistic semantics.

The classical and most basic model to represent probabilistic data is that of tuple-independent probabilistic
databases (PDBs) [14], which indeed underlies some of these systems [6, 2]. Probabilistic databases, however, lack a
suitable handling of incompleteness. In particular, each of the above systems encodes only a portion of the real-world,
and this description is necessarily incomplete. For example, according to YAGO, the average number of children per
person is 0.02 [15]. However, when it comes to querying, most of these systems employ the closed-world assumption
(CWA) [16] – according to the tuple-independent PDB semantics, each database atom is an independent Bernoulli ran-
dom variable, and all other atoms have probability zero. That is, many facts are assumed to be impossible, although
they actually have some unknown probability in [0, 1].

In this paper, we revisit the CWA of probabilistic databases, and observe that the CWA is violated in the deployment
of these systems, which makes it problematic to reason, learn, or mine on top of these databases. We will argue the
following salient points in detail. First, query answering under the CWA does not take into account the effect the open-
world can have on the query probability. This makes it impossible to distinguish queries whose probability should
intuitively differ. Second, knowledge bases are part of a larger machine learning loop that continuously updates beliefs
about facts based on new evidence. From a Bayesian learning perspective [17], this loop can only be principled when
learned facts have an a priori non-zero probability. The CWA does not accurately represent this mode of operation
and puts it on weak footing. Third, the CWA is problematic for higher level tasks that one is usually interested
in performing on probabilistic databases, including some principled approaches to knowledge base completion and
mining. Finally, we note that these issues are not temporary: it will never be possible to complete probabilistic
knowledge bases of even the most trivial relations, as the memory requirements quickly become excessive. This
already manifests itself today: statistical classifiers output facts at a high rate, but only the most probable ones make
it into the knowledge base, and the rest is truncated, losing much of the statistical information. For example, 99% of
the facts in NELL have a probability larger than 0.91.

We propose a new semantics for probabilistic knowledge bases to address these problems, based on the open-world
assumption (OWA). In contrast to the CWA, the OWA does not presume that the knowledge of a domain is complete,
and as a consequence, all open atoms remain possible. Our proposal for open-world probabilistic databases (Open-
PDBs) builds on the theory of imprecise probabilities, and credal sets [18], to allow interval-based probabilities for
open atoms. OpenPDBs define a probability threshold to determine which facts make it into the knowledge base,
which is motivated by the mode of operation in systems that learn knowledge bases. In OpenPDBs, all facts in the
open world must have a lower probability, which bounds their contribution to the probability of possible worlds.
This data model provides more meaningful answers, in terms of upper and lower bounds on the query probability.
Throughout this paper, we assume a finite domain, but we include a discussion of probabilistic reasoning with a
possibly infinite number of objects as well as other recent extensions in the related work section.

The organization of this paper is as follows. Section 2 is dedicated to preliminaries, where we provide an overview
on logics, databases, and the query languages that are relevant to our study. This section also includes a brief back-
ground on some complexity classes which are central to this paper. In Section 3, we recall (tuple-independent)
probabilistic databases and analyze the CWA, and its implications in practice, based on the above-mentioned desider-
ata. In Section 4, we introduce OpenPDBs, and discuss how this model evaluates in practice. The decision problems
regarding probabilistic query evaluation are introduced in Section 5 with an overview of existing results. Section 6
contains all the data complexity results, and Section 7 all the combined complexity results obtained in this paper. We
review the related work in Section 8, and locate our approach in the existing literature. We conclude with discussions
for future work and concluding remarks. For presentation purposes, we defer the proofs to the appendix of this paper.

This work is based on a conference paper which appeared first in KR 2016 [19], and later also as an abridged report
in IJCAI 2017 [20]. This paper extends the conference version with all technical preliminaries and proof details. We
also provide a complete picture for our complexity landscape, by including an analysis on the combined complexity.
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Most of these results appeared earlier, as part of the dissertation of the first author [21].

2. Preliminaries

We recall first-order logic and databases with a special focus on the query answering problem, and various query
languages. We conclude by providing some complexity background that is relevant for this paper.

2.1. Logic and Notation

We focus on the function-free fragment of first-order logic (FOL) and assume a finite domain. A relational vocab-
ulary σ consists of finite sets R of predicates, C of constants, and a (possibly infinite) set V of variables. The function
ar : R 7→ N associates a natural number to each predicate R ∈ R that defines the (unique) arity of R. A term is either
a constant or a variable. An atom is of the form R(s1, . . . , sn), where R is an n-ary predicate, and s1, . . . , sn are terms.
A ground atom (also called fact, record, or tuple) is an atom that contains only constants as terms.

First-order formulas are built from atoms inductively via negation, conjunction, disjunction, existential quantifi-
cation, and universal quantification as usual, using the syntax rule:

Φ = R(s1, . . . , sn) | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∃x.Φ | ∀x.Φ,

where R(s1, . . . , sn) is an atom, and x is a variable. We express implication Φ→ Ψ = ¬Φ∨Ψ; truth > = Φ∨¬Φ; and
falsity ⊥ = Φ ∧ ¬Φ, as usual.

A formula is quantifier-free if it does not use a quantifier. A variable x in a formula Φ is quantified, or bound
if it is in the scope of a quantifier; otherwise, it is free. We use a vector notation to denote a sequence of variables
x1, . . . , xn by ~x, and use Φ(~x) to represent a formula Φ with free variables ~x. A (first-order) sentence is a first-order
formula without any free variables, also called a closed formula. A formula is positive (or monotone) if it does not
contain negations, but can contain the truth constant >. A literal is either an atom or its negation. A disjunctive clause
is a disjunction of literals and a conjunctive clause is a conjunction of literals.

The semantics of first-order logic over finite domains can be defined in terms of Herbrand interpretations [22].
The Herbrand base of a relational vocabulary σ is the set of all ground atoms that can be constructed from the set of
predicates (R) and set of constants (C). An interpretation is then a truth-value assignment to all the ground atoms in
the Herbrand base. An interpretation ω is a model of formula Φ, denoted by ω |= Φ, if ω satisfies Φ, defined in the
usual way.

Let FO be the class of first-order formulas. The class of existential first-order formulas (∃FO) consists of first-order
formulas of the form ∃~x.Φ(~x); the class of universal first-order formulas (∀FO) consists of first-order formulas of the
form ∀~x.Φ(~x), where Φ is any Boolean combination of atoms. The class of formulas in existential conjunctive normal
form (∃CNF) consists of first-order formulas of the form ∃~x.Φ(~x); the class of formulas in universal conjunctive
normal form (∀CNF) consists of first-order formulas of the form ∀~x.Φ(~x), where in both cases, Φ is a conjunction of
disjunctive clauses. The class of formulas in existential disjunctive normal form (∃DNF) consists of formulas of the
form ∃~x.Φ(~x); the class of formulas in universal disjunctive normal form (∀DNF) consists of formulas of the form
∀~x.Φ(~x), where in both cases, Φ is a disjunction of conjunctive clauses. The class of formulas in conjunctive normal
form (CNF) consists of ∃CNF and ∀CNF formulas. The class of formulas in disjunctive normal form (DNF) consists
of ∃DNF and ∀DNF formulas. We also write kCNF, or kDNF, to denote the class of formulas, where k is the maximal
number of atoms that a clause can contain.

2.2. Databases and Query Languages

Relational databases [23] are standard tools for data management. They provide sophisticated means for storing,
processing, and querying data sources. Intellectual roots of database theory are in first-order logic [24]; in particular, in
finite model theory [25]. We thus adopt a model-theoretic perspective and view a database as a Herbrand interpretation
and denote it byD.

A classical representation of a relational database is in terms of database tables, which organize atoms relative to
the relations. Each table corresponds to a predicate and its rows correspond to ground atoms of that predicate, which
are also called records, facts, or tuples. For example, Table 1 consists of two relational database tables. The atoms
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Table 1: The relational databaseDm represented in terms of relational database tables. Each row is interpreted as a ground atom. For example, the
first row in the left table is interpreted as StarredIn(will smith, ali).

StarredIn

will smith ali
arquette scream
pitt mr ms smith
jolie mr ms smith

Couple

arquette cox
pitt jolie
pitt aniston
kunis kutcher

that appear in a table are mapped to true, while ones not listed in any of these tables are mapped to false, according
to the CWA [16]. Similarly, a databaseD is sometimes represented as a set that contains all ground atoms mapped to
true. For instance, the database from Table 1 is given as:

Dm = {StarredIn(will smith, ali),StarredIn(arquette, scream), . . . ,Couple(kunis, kutcher)}.

The most fundamental task in databases is query answering; that is, given a databaseD and a query, i.e., a formula
Φ(x1, . . . , xn) of first-order logic, to find all substitutions (answers) [x1/a1, . . . , xn/an] for free variables such that
D |= Φ[x1/a1, . . . , xn/an]. We focus on the special case called (Boolean) query evaluation, that is, given a databaseD
and a closed first-order formula Φ, to decide whetherD |= Φ.

There exists a plethora of query languages in the literature. Classical database query languages range from the
well-known conjunctive queries to arbitrary first-order queries, which we briefly recall. A conjunctive query (CQ) over
σ is an existentially quantified formula ∃x1 . . . xn.φ, where φ is a conjunction of atoms constructed from vocabulary σ.
A union of conjunctive queries (UCQs) is a disjunction of conjunctive queries over the same free variables. Consider,
for example, the query:

Q1(x, y) = ∃z StarredIn(x, z) ∧ StarredIn(y, z) ∧ Couple(x, y),

which asks for couples that starred in the same movie. This formula is an existentially quantified conjunction of
atoms, i.e., a conjunctive query. Following common convention, we sometimes write the atoms as a comma-separated
list, and drop the existential quantifiers:

Q1(x, y) = StarredIn(x, z),StarredIn(y, z),Couple(x, y).

Answers to such queries are tuples of constants from the database that match the query. For example,Dm has only
one answer to Q1(x, y), i.e., [x/pitt, y/jolie]. Throughout the paper, we focus on Boolean queries, and on the query
evaluation problem. Answers to such queries are either true or false. For example, the query:

Q2 = ∃x, y, z StarredIn(x, z),StarredIn(y, z),Couple(x, y),

returns true on the databaseDm since there is a match for the query, i.e., [x/pitt, y/jolie, z/mr ms smith].
Note that the class UCQ corresponds to positive ∃DNF sentences. We also refer to unions of ∀CNF sentences,

denoted UCNF, which is a disjunction of ∀CNF sentences. For example, the query:

Q∀CNF = ∀x, y, z (Actor(x) ∨ StarredIn(y, z)) ∧ (StarredIn(x, y) ∨Male(x)),

is in ∀CNF and can be rewritten into UCNF as:

QUCNF = ∀x, y Actor(x) ∧ (StarredIn(x, y) ∨Male(x)) ∨ ∀x, y, z StarredIn(y, z) ∧ (StarredIn(x, y) ∨Male(x)).

This concludes our overview on databases and query languages.
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2.3. Complexity Background

We assume familiarity with the basics of complexity theory [26], and introduce the complexity classes that are
most relevant to the presented results.

FP is defined as the class of functions f : {0, 1}∗ → {0, 1}∗ computable by a polynomial-time deterministic Turing
Machine. The function class #P is central for problems related to counting [27], and contains the computation prob-
lems that can be expressed as the number of accepting paths of a nondeterministic polynomial-time Turing machine.
The canonical problem for #P is #SAT, that is, given a propositional formula φ, the task of computing the number of
satisfying assignments to φ.

In this paper, we focus on decision problems and the associated complexity classes. Intuitively, the complexity
class PP [28] can be seen as the decision variant of #P. Formally, PP is the set of languages recognized by a polynomial
time nondeterministic Turing machine that accepts an input if and only if more than half of the computation paths are
accepting. The canonical problem for PP is MAJSAT, that is, given a propositional formula φ, the problem of deciding
whether the majority of the assignments to φ are satisfying. Many problems in the AI literature, e.g., decisions about
probabilistic inference in Bayesian networks, are PP-complete [29].

PP is closed under truth table reductions [30]; in particular, this implies that PP is closed under complement, union,
and intersection. Due to Toda’s celebrated result, it is known that PH ⊆ P#P; that is, a polynomial time deterministic
Turing machine with access to a #P oracle is capable of deciding all problems in the polynomial hierarchy [31]. The
close connection between PP and #P is also given by Toda’s theorem, which proves PPP = P#P [32].

Other classes of interest are NPPP and PPNP, which intuitively combine search and optimization problems. A
canonical problem for PPNP can be obtained by extending MAJSAT with quantified formulas [33]. A natural canonical
problem for NPPP is EMAJSAT [34]; that is, given a propositional formula φ and a set of distinguished variables ~x
from φ, is there an assignment µ to ~x-variables such that majority of the assignments τ that extend µ satisfies φ.
The class NPPP is important for probabilistic inference, and planning tasks. For instance, maximum a posteriori
probability (MAP) inference in Bayesian Networks is NPPP-complete [35]. The relation of these complexity classes
to other classes can be summarized as follows:

P ⊆ NP ⊆ PP ⊆ PPNP ⊆ PPP = P#P ⊆ NPPP ⊆ PSpace ⊆ Exp.

For decision classes, many-one reductions are standard. On the other hand, for classes, such as #P, different
types of reductions are widely used. The most common reductions for #P are the so-called polynomial time Turing
reductions, also known as Cook reductions [36]. All of our results in this paper are given under standard many-one
reductions, except the dichotomy results, which are given under polynomial time Turing reductions. Hence, we will
implicitly assume many-one reductions, unless explicitly stated otherwise.

When analyzing the complexity of query evaluation, our main focus is on data complexity which is calculated
only based on the size of the database, i.e., the query is assumed to be fixed, as usual [37]. The combined complexity
of query evaluation is calculated by considering all the components, i.e., the database, and the query, as part of the
input. We also study (bounded-arity) combined complexity (or, simply bounded-arity complexity) which assumes that
the maximum arity of the predicates is bounded by an integer constant. Note that both data and combined complexity
are fairly standard in database theory. We follow standard conventions for hardness and completeness of problems in
data and combined complexity (Chapter 6, [25]).

3. Probabilistic Databases

The literature on probabilistic databases is rich and there are many different types of probabilistic data mod-
els; for details, see e.g. [14, 38]. We adopt the simplest probabilistic database model, which is based on the tuple-
independence assumption. Despite its limitations, the tuple-independent PDB model is very powerful. For instance,
inference in Markov Logic Networks can be reduced to query evaluation in PDBs [39], and analogous results are
known for a restricted class of ontology languages [40]. Tuple-independent probabilistic databases generalize classi-
cal databases by associating every database atom with a probability value.

Definition 3.1. A probabilistic database (PDB) P for a vocabulary σ is a finite set of tuples of the form 〈t : p〉, where
t is a ground atom over σ and p ∈ (0, 1]. Moreover, if 〈t : p〉 ∈ P and 〈t : q〉 ∈ P, then p = q.
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Table 2: The PDB Pm = {〈StarredIn(will smith, ali) : 0.9〉 , . . . , 〈Couple(kunis, kutcher) : 0.7〉} represented in terms of database tables. Each row
is interpreted as a probabilistic atom 〈t : p〉, where t is a (ground) atom and p represents its probability.

StarredIn P

will smith ali 0.9
will smith sharktale 0.8
jada smith ali 0.6
arquette scream 0.7
pitt mr ms smith 0.5
jolie mr ms smith 0.7
jolie sharktale 0.9

Couple P

arquette cox 0.6
pitt jolie 0.8
thornton jolie 0.6
pitt aniston 0.9
kunis kutcher 0.7

Table 2 shows an example PDB where each row in a table represents an atom, and each atom is now also associated
with a probability value. A PDB can be viewed as a factored representation of exponentially many possible worlds
(databases), each of which has a probability of being the true world. Both in the AI [41, 42, 43] and database liter-
ature [14], this is known as the possible world semantics. In PDBs, each database atom is viewed as an independent
Bernoulli random variable, by the tuple-independence assumption. Each world is then simply a classical database,
which sets a choice for all database atoms in the PDB. The CWA forces all atoms that are not present in the database
to have probability zero.

Definition 3.2. A PDB P for vocabulary σ induces a unique probability distribution PP over possible worldsD such
that

PP(D) =
∏
t∈D

PP(t)
∏
t<D

(1 − PP(t)),

where the probability of each tuple is given as:

PP(t) =
{ p if 〈t : p〉 ∈ P

0 otherwise.

Whenever the probabilistic database is clear from the context, we simply write P(t), instead of PP(t). We say that a
database is induced by a PDB P if it is a possible world (with a non-zero probability) of P.

Observe that the choice of setting PP(t) = 0 for facts missing from PDB P is a probabilistic counterpart of the
CWA. Let us now illustrate the semantics of PDBs on a simple example.

Example 3.3. Consider the PDB Pm from Table 2 and the database:

Dm = {StarredIn(will smith, ali), . . . ,Couple(kunis, kutcher)},

as given in Table 1. The probability of the worldDm can then be computed as follows:

P(Dm) = 0.9 · (1 − 0.8) · · · (1 − 0.6) · 0.9 · 0.7.

If we further add the fact Couple(will smith, aniston) to Dm, then P(Dm) = 0 because the additional fact does not
appear in the PDB Pm.

Queries are interpreted through the possible world semantics, which amounts to walking through all the possible
worlds, and summing the probabilities of those worlds that satisfy the query.

Definition 3.4 (query semantics). Let Q be a Boolean query and P be a PDB. The probability of Q in the PDB P is
defined as

PP(Q) =
∑
D|=Q

PP(D),

whereD ranges over all possible worlds.
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In general, there are exponentially many worlds, and this makes probabilistic query evaluation a computationally
very demanding task, but as we discuss later, in certain cases, computing the query probability efficiently is known to
be feasible.

Consider for instance the PDB Pm, and the query Q = ∃x, y, z StarredIn(x, y),Couple(x, z). To evaluate Q, we
can naı̈vely check, for each world D, whether D |= Q, and sum over the probabilities of the worlds, for which the
satisfaction relation holds. However, it is easy to compute the probability of the above query in a different way.
Notably, this is the case for any PDB and not only for our toy PDB in data complexity. We will later look into
existing results on query evaluation in order to provide more insights on easy, and hard queries. We now evaluate the
probabilistic database model and its use in practice, which constitutes our main motivation.

3.1. Probabilistic Databases in Practice
We evaluate PDBs on several criteria, and illustrate certain limitations, which are inherent to the semantics of

PDBs and the widely employed assumptions. Most importantly, the CWA presumes complete knowledge about the
domain being represented, and this assumption is warranted in many cases [16]. For example, when a flight does not
appear in an airline database, we can be sure that it never took place. In what follows, we assess the adequacy of the
CWA for probabilistic databases.

3.1.1. Distinguishing Queries in PDBs
The fact that many queries evaluate to probability zero makes it impossible to distinguish a large class of queries,

which should intuitively differ, as we illustrate next.

Example 3.5 (specificity). Consider the PDB Pm from Table 2 and the following queries:

Q1(x, y) = ∃z StarredIn(x, z) ∧ StarredIn(y, z) ∧ Couple(x, y),
Q2 = ∃x, y, z StarredIn(x, z) ∧ StarredIn(y, z) ∧ Couple(x, y).

Let us consider the queries Q1(pitt, jolie) and Q2. From a logical perspective, Q1(pitt, jolie) entails Q2, i.e.,
Q1(pitt, jolie) |= Q2. In other words, the pattern specified by Q1(pitt, jolie) is only a special case of the pattern specified
by Q2. Hence, the reasonable expectation in an open-world setting is that P(Q2) is most likely to have a larger prob-
ability than P(Q1(pitt, jolie)), since there exist a large number of couples, for which we do not yet have information,
and that could satisfy the query Q2. Under the CWA, however, P(Q2) = P(Q1(pitt, jolie)) = 0.28 in the PDB Pm.

Example 3.5 shows that query semantics under the CWA fails to distinguish a query from a particular instance of
this query. In our next example, we consider two logically incomparable queries that have varying level of support in
the database.

Example 3.6 (support). Consider the queries Q1(will smith, jada smith) and Q1(thornton, aniston). The former
query is supported by two facts in the PDB Pm (both people have starred in the same movie), while the latter
query is supported by none, which should make it less likely. Conversely, the number of tuples to be added to
the PDB Pm to satisfy Q1(thornton, aniston) are more than the number of tuples to be added to the PDB Pm to satisfy
Q1(will smith, jada smith). Observe, however, that

P(Q1(thornton, aniston)) = P(Q1(will smith, jada smith)) = 0,

that is, both of the queries evaluate to probability zero under the CWA.

Example 3.6 shows that queries that do not have a matching answer in the database are viewed to be the same
by the query semantics, even though these queries clearly have different levels of support in the database. The fol-
lowing example takes these observations to the extreme, by comparing the probabilities of a satisfiable query with an
unsatisfiable query.

Example 3.7 (satisfiability). The query StarredIn(x, y) ∧ ¬StarredIn(x, y) is an unsatisfiable query, whose probability
is zero on any database. The query Q1(will smith, jada smith), on the other hand, is a satisfiable query, but evaluates
to the same probability (i.e., zero) on the PDB Pm.

The CWA forces a strict view on query probability, and as a result, it is not always possible to distinguish a
satisfiable query from an unsatisfiable one, by comparing their probabilities.
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3.1.2. Learning, Mining, and Knowledge Base Completion in PDBs
We analyze the consequences of the CWA in the context of higher-level tasks that one is usually interested in

performing on probabilistic databases. These tasks range from learning, or mining to tasks such as knowledge base
completion, as we detail in the sequel.

Let us consider the Bayesian learning paradigm, which is a popular view on machine learning, where the learner
maintains beliefs about the world as a probability distribution, and updates these beliefs based on data, to obtain a
posterior distribution. Probabilistic data (and knowledge) bases can be cast into this principled framework, as follows.

Suppose that we are building a probabilistic knowledge base from scratch. The first step of Bayesian learning is to
come up with a prior belief about the facts in the database. Next, as we read the web, we incorporate more evidence
into our distribution. For example, suppose we observe two web pages, da and db, and are interested in querying for
Q2 as defined above. Then, we may have

P(Q2) = 0.01, P(Q2 | da) = 0.09, P(Q2 | da, db) = 0.08,

that is, our prior belief is that the probability of Q2 is 1%, but after observing the information on web page da, that
probability becomes 9%. When additionally observing web page db, giving evidence to the contrary, the belief drops
to 8%.

This sequence is a typical run of Bayesian learning. Unfortunately, it is not the mode of operation for large-scale
PDBs as they currently function. A typical run would instead be

P(Q2) = 0, P(Q2 | da) = 0.09, P(Q2 | da, db) = 0.08,

The difference is subtle, but important. The first induction, from a belief of 0% to 9% is impossible to obtain from a
single probability distribution P and violates the axioms of belief update. When Q2 is impossible according to P, it
remains impossible after observing evidence. Hence, the Bayesian learning paradigm fails in practice. More precisely,
given a PDB at time t, such systems gather data Dt to obtain a new model Pt+1(.) = Pt(. |Dt). Systems continuously
add facts f , that is, set Pt+1( f ) > 0, whereas previously Pt( f ) = 0; an impossible induction for Bayesian learning1.

Differently, let us consider knowledge base completion, i.e., the task of predicting new facts based on the existing
facts in the knowledge base. One approach to knowledge base completion is to learn a probabilistic model from
training data. Consider for example a probabilistic rule [12, 13] of the form

Costars(x, y)
0.8
←−− StarredIn(x, z),StarredIn(y, z),Couple(x, y).

encoding the fact that if the query StarredIn(x, z),StarredIn(y, z),Couple(x, y) succeeds on a database, there is an
80% probability that we should derive the fact Costars(x, y). To evaluate the quality of this rule to predict the Costars
relation, the standard approach would be to take the current probabilistic database together with labeled training data:

D = {Costars(will smith, jada smith),Costars(pitt, jolie)},

and quantify the conditional likelihood of the rule [44]. However, the rule predicts the probability zero for the fact
Costars(will smith, jada smith), as it is missing from the database. The rule gets the worst likelihood score of zero,
regardless of its performance on other facts in the training data. Indeed, the semantics tells us that the absence of
a single tuple can make Costars(will smith, jada smith) impossible, invalidating the entire rule, which is otherwise
highly accurate.

Another high-level task is to mine frequent patterns in the knowledge base. Given the probabilistic database the
goal would, for instance, be to find interesting patterns, such as the pattern that many couples star in the same movie,
and report it to the data miner. Again, the CWA will underestimate the expected frequencies of these patterns, and
stand in the way of progress [45].

1 Our goal is to highlight the consequences of the CWA in the Bayesian learning paradigm. We acknowledge, however, that the problems related
to fact acquisition in knowledge bases are deeper. One may argue, for instance, that fact acquisition should be interpreted as another type of belief
revision task, which is not necessarily Bayesian. While such discussions are very important, they are beyond the focus of the current paper, and
require an independent, and a dedicated study.
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Finally, we note that most of the automatically constructed PDBs are hardly probabilistic in the sense that most
facts have a very high probability (highly skewed towards one), placing PDBs into an almost crisp setting. The
underlying reason is that these systems retain only a small fraction of the discovered facts. Facts with a probability
below a threshold are discarded. This mode of operation is not an oversight, but in most cases, a necessity. It is not
always possible to retain all facts. Consider, for instance, the Sibling relation over a domain of 7 billion people. Storing
a single-precision probability for all Sibling facts would require 196 exabytes of memory; two orders of magnitude
more than the estimated capacity available to Google [46]. Moreover, the distribution of probabilities for such a
closed-world database would be vastly different from the current ones, i.e., highly skewed towards zero. This issue
of truncating and polynomial blow-up is inherent to probabilistic knowledge bases and needs to be acknowledged in
their semantics.

4. Open-World Probabilistic Databases

We observe that large-scale knowledge bases are incomplete by their nature and systems used to build such knowl-
edge bases should incorporate these characteristics into the query semantics. A feasible approach is to relax the
probabilities of facts that are not in the database to a default probability interval, which is very different from the
closed-world assumption of PDBs that requires the probabilities of such facts to be zero. Our proposal on open-world
probabilistic databases builds on the theory of imprecise probabilities to allow such default, interval-based proba-
bilities for the atoms that are not in the database. Syntactically, an open-world probabilistic database is a pair of a
probabilistic database and a predefined threshold value.

Definition 4.1 (syntax). An open-world probabilistic database (OpenPDB) is a pair G = (P, λ), where P is a proba-
bilistic database and λ is any rational number in [0, 1].

The semantics of OpenPDBs is based on completing probabilistic databases. Intuitively, an OpenPDB denotes a
partial specification over a vocabulary and needs to be completed by assigning a probability value from an interval
[0, λ] to each of the open atoms.

Definition 4.2 (completion). A λ-completion of a probabilistic database P is another probabilistic database that is
obtained as follows. For each atom t that does not appear in P, we add an atom 〈t : p〉 to P for some p ∈ [0, λ].

An OpenPDB induces a set of PDBs, each of which differs in the probabilities of the open atoms. Therefore,
while a closed probabilistic database induces a unique probability distribution, an OpenPDB induces a (credal) set of
probability distributions. A credal set is a closed convex set of probability distributions over a shared set of random
variables.

Definition 4.3 (OpenPDBs). An open probabilistic database G = (P, λ) induces a credal set of probability distribu-
tions KG such that distribution P belongs to KG if and only if P is induced by some λ-completion of the PDB P.

Intuitively, an OpenPDB represents all possible ways to extend a PDB with new atoms from the open world, with
the restriction that the probability of these unknown atoms can never be larger than λ. When it is clear from the
context, we will say completion instead of λ-completion.

Example 4.4. Consider again the PDB Pm from our running example. The pair Gc = (Pm, 0.5) denotes an OpenPDB
where open tuples can have the probability at most 0.5, shown in Table 3. Clearly, there are infinitely many possible
completions of Gc. Consider, for instance, the following completions:

P0 = Pm ∪ {〈t : 0〉 | t is an open atom in the PDB Pm},

P0.5 = Pm ∪ {〈t : 0.5〉 | t is an open atom in the PDB Pm}.

These completions are special since they uniformly set all of the open atoms to the same probability value. These
two completions induce different probability distributions, both of which belong to KGc .

Query semantics has to also take into account sets of probability distributions, and provide query probabilities in
terms of upper and lower probability values.

9



Table 3: The OpenPDB Gc = (Pm, 0.5) induces an infinite set of PDBs. Rows depicted in orange color represent open atoms that can take on any
rational probability value from the default probability interval [0, 0.5].

StarredIn P

will smith ali 0.9
will smith sharktale 0.8
jada smith ali 0.6
arquette scream 0.7
pitt mr ms smith 0.5
jolie mr ms smith 0.7
jolie sharktale 0.9
pitt ali [0, 0.5]
pitt fightclub [0, 0.5]
arquette fightclub [0, 0.5]
... ... [0, 0.5]

Couple P

arquette cox 0.6
pitt jolie 0.8
thornton jolie 0.6
pitt aniston 0.9
kunis kutcher 0.7
will smith jada smith [0, 0.5]
arquette jolie [0, 0.5]
pitt kutcher [0, 0.5]
... ... [0, 0.5]

Definition 4.5 (query semantics). Let Q be a Boolean query and G be an OpenPDB. The probability interval of Q in
the OpenPDB G is defined as KG(Q) = [P

G
(Q),PG(Q)], where

P
G

(Q) = min
P∈KG

P(Q) and PG(Q) = max
P∈KG

P(Q).

Let us illustrate these concepts on an example.

Example 4.6. Consider the OpenPDB Gc = (Pm, 0.5) and an open atom t. We have P
Gc

(t) = 0 and PGc (t) = λ by the
query semantics. For instance, the ground query Q = StarredIn(pitt, fightclub) evaluates to probability zero in Pm. As
for Gc, it is easy to see that P

Gc
(Q) = 0 and PGc (Q) = 0.5. The lower probability of Q remains the same due to the

completion that assigns all open atoms the probability 0, while the upper probability increases due to the completion
P0.5, shown earlier.

Our approach is analogous to the open world assumption defined over classical databases [16], where a database
no longer corresponds to a single interpretation, but rather to the set of interpretations that extend it. A similar effect
is achieved by OpenPDBs: an open probabilistic database no longer corresponds to a single distribution, but to the set
of distributions that extend it. In restricting the probabilities of open atoms to lie in [0, λ], OpenPDBs follow a rich
literature on interval-based probabilities [47], which is also employed in credal networks [48]. Note also that setting
a default probability interval is a form of default reasoning [49].

4.1. OpenPDBs in Practice
We discuss the implications of the open-world semantics, and compare it to closed-world PDBs. In particular, we

revisit the motivating examples provided in Section 3, and highlight the differences in OpenPDBs.

4.1.1. Distinguishing Queries in OpenPDBs
In Section 3, we argued that the closed-world semantics fails to distinguish a class of queries which intuitively

differ. Let us evaluate these queries in OpenPDBs, starting with the problem of distinguishing different levels of
specificity.

Example 4.7 (specificity). Consider again the following queries:

Q1(x, y) = ∃z StarredIn(x, z) ∧ StarredIn(y, z) ∧ Couple(x, y),
Q2 = StarredIn(x, z),StarredIn(y, z),Couple(x, y).

In Example 3.5, we have noted that both the query Q1(pitt, jolie) and Q2 evaluate to the same probability in the
PDB Pm. Since Q1(pitt, jolie) |= Q2, we argued that it was more reasonable to expect that P(Q2) > P(Q1(pitt, jolie)),
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assuming our knowledge is not complete. This is indeed the case for the OpenPDB Gc = (Pm, 0.5) for upper prob-
abilities: PGc (Q2) > PGc (Q1(pitt, jolie)) since there are many worlds with non-zero probability that entail Q2 but not
Q1(pitt, jolie). Notice that the lower probabilities remain unchanged.

It is hence possible to distinguish a query from a particular instance of this query, by comparing their respective
upper probabilities in OpenPDBs. A similar argument applies to queries with varying level of support.

Example 4.8 (support). Recall that Q1(will smith, jada smith) has more support than P(Q1(thornton, aniston)) inPm,
as less additional facts are needed in Pm to satisfy Q1(will smith, jada smith). Both queries evaluate to probability
zero in Pm, as identified in Example 3.6. Let us evaluate the queries in the OpenPDB Gc = (Pm, 0.5), where the upper
probability of open facts is bounded by 0.5, and hence lower than the probability of existing facts in Pm. Then,

P(Q1(will smith, jada smith)) > P(Q1(thornton, aniston)) > 0,

as Pm requires fewer additional facts in a completion to satisfy Q1(will smith, jada smith).

Thus, it is possible to distinguish queries that do not have a matching answer, as such queries typically have
varying levels of support in the database. We also observed that an unsatisfiable query is, in some cases, as likely as a
satisfiable one in the closed world. How are such queries evaluated in the open world?

Example 4.9 (satisfiability). Recall from Example 3.7 the query Q1(will smith, jada smith) as well as the query
StarredIn(x, y) ∧ ¬StarredIn(x, y) evaluates to probability zero on the PDB Pm. In the open-world setting, the upper
probability of a satisfiable query is always greater than the upper probability of an unsatisfiable query. Clearly, any
unsatisfiable query still has a zero upper probability, because it is false in all completions.

These synthetic examples underline the difference in the semantics of PDBs and OpenPDBs. Do we really en-
counter similar examples in real-world data, which can benefit from an open-world perspective? To elaborate more
on this question, we have extracted a portion from the NELL database concerning movies, actors, directors, etc. We
conclude this subsection with this example.

Example 4.10 (real-world data). Consider the following queries constructed based on a portion of the NELL database:

Q1 = Actor(pattinson) ∧Workedfor(pattinson, hardwicke) ∧ Director(hardwicke),
Q2 = ∃x Actor(x) ∧ StarredIn(x, trainspotting) ∧Movie(trainspotting) ∧ ¬Director(x),
Q3 = ∃x Actor(pattinson) ∧Workedfor(pattinson, x) ∧ Director(x).

All of the above queries have probability zero on the NELL database, yet we know they correspond to factually
true statements. These queries, however, can be distinguished in an open-world setting, as they have varying levels of
support. For example, we observe that Q1 entails Q3, and posing these queries in the open-world setting, we indeed
obtain P(Q3) > P(Q1) for any non-zero threshold λ. For instance, P(Q3) = 0.82 and P(Q1) = 0.51 for λ = 0.3. The
query Q2 finds actors that starred in the movie Trainspotting and did not direct a movie. Interestingly, there is no
world satisfying this query in the (closed-world) NELL database. Evaluating Q2 in OpenPDBs yields P(Q2) = 0.98
and P(Q2) = 0.78 with thresholds 0.7 and 0.3, respectively. These answers are clearly more in line with what one
would expect.

4.1.2. Learning, Mining, and Knowledge Base Completion in OpenPDBs
We argued that the Bayesian learning paradigm is not in line with the CWA: as all open atoms are assigned

the probability zero by the CWA, the principles of Bayesian learning are continuously violated while extending the
knowledge base with new facts. The open-world semantics avoids this problem since (i) our initial belief consists of
a set of probability distributions instead of a single one, and (ii) open atoms can take on probabilities from a default
interval, i.e., not necessarily the probability zero.

We also argued that CWA permeates knowledge base completion, mining, and evaluation tasks, where we want to
learn new facts to add to the database, using the facts that are already present. Recall the probabilistic rule [12, 13]:

Costars(x, y)
0.8
←−− StarredIn(x, z),StarredIn(y, z),Couple(x, y),
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stating that if the query StarredIn(x, z),StarredIn(y, z),Couple(x, y) succeeds on a database, there is an 80% probabil-
ity for deriving Costars(x, y). Unlike PDBs, we do not get a prediction score zero for Costars(will smith, jada smith)
in OpenPDBs, as there are completions that contain this fact. Thus, the rule does not get the worst likelihood score of
zero, but a higher likelihood, based on any completion that contains the fact Costars(will smith, jada smith).

Finally, while motivating the need for open-world probabilistic databases, we argued that the issue of truncating
and polynomial blow-up is inherent to probabilistic knowledge bases, and hence needs to be acknowledged in their
semantics, since it is not always possible to retain all facts in the database whose probability fall below a certain
threshold. The λ-value in OpenPDBs precisely represents this threshold.

5. Probabilistic Query Evaluation

Computing the probability of a query is a computationally demanding task in PDBs. We recall existing results for
decision problems in PDBs and then present our results on OpenPDBs.

5.1. Query Evaluation in Probabilistic Databases
Dalvi and Suciu proved a dichotomy result for probabilistic query evaluation that classifies UCQs as either being

computable in polynomial time, or #P-hard [50]. We are interested in the decision problem of probabilistic query
evaluation, as defined next.

Definition 5.1 (probabilistic query evaluation). Given a PDB P, a query Q and a threshold value p ∈ [0, 1), prob-
abilistic query evaluation, denoted PQE, is to decide whether PP(Q) > p. We write PQE(Q) to denote probabilistic
query evaluation for a fixed query Q. PQE can be defined over a particular query language instead of a specific query,
in which case, we write PQE(L) to define PQE on the class L of queries.

Whenever the probabilistic database is clear from the context, we simply write P(Q) in place of PP(Q).

Remark 1. It is important to note that the decision problems PQE(Q) and PQE(L) are different. The former is more
specific than the latter. Specifically, we can define the classes of instances captured by the respective decision problems
as follows:

PQE(Q) = {Decide whether PP(Q) > p? | P is a PDB, p ∈ [0, 1)},
PQE(L) = {Decide whether PP(Q) > p? | P is a PDB, p ∈ [0, 1), Q ∈ L}.

That is, PQE(L) =
⋃

Q∈L PQE(Q).

Remark 2. For our complexity analysis, we follow standard notions of data, and (bounded-arity) combined complex-
ity, as explained in Section 2: data complexity of probabilistic query evaluation is calculated only based on the size
of the probabilistic database, i.e., the query is fixed. The combined complexity of query evaluation is calculated by
considering all the components, i.e., the probabilistic database, and the query are part of the input. For (bounded-arity)
combined complexity, we additionally assume that the maximum arity of the predicates is bounded by an integer con-
stant2. Within the scope of this paper, we always assume that the threshold value p ∈ [0, 1), and the probability values
from the interval [0, 1] are always given as rational numbers. We also allow the threshold value p to depend on the
input. This is a reasonable assumption since the probability computation necessarily depends on the data.

We defined the decision problems based on the comparison operator >, but since we focus on probabilistic
databases, where the probabilities are always directly encoded in the input atoms, it is always possible to reduce
the test for ≥ to the test for >, and vice versa.

Lemma 5.2. For any PDB P, and query Q, there exists a value ε which is polynomial in the size of P such that
deciding P(Q) > p can be reduced to deciding P(Q) ≥ p + ε, and deciding P(Q) ≥ p can be reduced to deciding
P(Q) ≥ p− ε in polynomial time. Similarly, deciding P(Q) < p can be reduced to deciding P(Q) ≤ p− ε, and deciding
P(Q) ≤ p can be reduced to deciding P(Q) < p + ε in polynomial time.

2Clearly, PQE(Q) only applies to data complexity, since the query is fixed by definition. PQE(L) applies to all measures considered, e.g., in
data complexity, we are free to choose any query Q ∈ L for PQE(L), but the query must still be fixed.
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x̃

ỹ
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(a) QH = ∃x, y C(x) ∧ R(x, y) ∧ D(x)

ỹ x̃

R

C D

(b) QNH = ∃x, y C(x) ∧ R(x, y) ∧ D(y)

Figure 1: Venn diagram for the queries QNH (non-hierarchical) and QH (hierarchical).

We state Lemma 5.2 for PDBs, but it is easy to generalise this to many other related models, including OpenPDBs.
This lemma gives us some liberty in the use of the operators ≥ and >. Hence, in some proofs, we will use, e.g., ≥ and
> interchangeably.

The data complexity of query evaluation depends heavily on the structure of the query. It is common to say that
a query is safe if the computation problem is in FP, and unsafe, otherwise. Probabilistic query evaluation, as defined
here, is the corresponding decision problem. It is easy to see that this problem is either in P or it is PP-complete, as a
corollary to the original result of Dalvi and Suciu.

Corollary 5.3 ([50]). Let Q be a UCQ. Then, PQE(Q) is either in P or it is PP-complete for PDBs in data complexity
under polynomial-time Turing reductions.

Just like the original dichotomy, this result holds under polynomial-time Turing reductions. We use the same
terminology also for the decision problem: we say that a query Q is safe if PQE(Q) is in P, and unsafe, otherwise.

Dalvi and Suciu [51] proved the small dichotomy result, which applies to a subclass of conjunctive queries. As
it gives nice insights on the larger dichotomy result [50], and allows us to introduce the basic notions relevant to this
paper, we present this result in more detail. The small dichotomy applies to all conjunctive queries without self-joins,
i.e., conjunctive queries with non-repeating relation symbols. It asserts that a self-join free query is hard if and only if
it is nonhierarchical, and it is safe, otherwise. Therefore, it is crucial to understand hierarchical and nonhierarchical
queries.

Definition 5.4 (hierarchical queries). Let Q be a conjunctive query. For any variable x that appears in the query Q,
its x-cover, denoted x̃, is defined as the set of all relation names that have the variable x as an argument. Two covers
x̃ and ỹ are pairwise hierarchical if and only if x̃ ∩ ỹ , ∅ implies x̃ ⊆ ỹ or ỹ ⊆ x̃. A query Q is hierarchical if every
cover x̃, ỹ is pairwise hierarchical; otherwise, it is called nonhierarchical.

Let us consider the query QNH = ∃x, y C(x) ∧ R(x, y) ∧ D(y). It is easy to see that this query is not hierarchical,
since (i) the relation R occurs in both covers x̃ and ỹ (as depicted in Figure 1b), and neither of the covers is a subset
of one another. This simple join query is already unsafe [51]. Note, however, that removing any of the atoms from
QNH results in a safe query. For example, the query ∃x, y C(x) ∧ R(x, y) is hierarchical and thus safe. The query
QH = ∃x, y C(x) ∧ R(x, y) ∧ D(x), as shown in Figure 1a, is yet another example of a safe query.

The intuition behind a safe query is the query being recursively decomposable into sub-queries such that each
sub-query is probabilistically independent. For example, the query QH admits a decomposition: we can first ground
over x, which results in a query of the form ∃y C(a) ∧ R(a, y) ∧ D(a) for a grounding [x/a]. The atoms in the resulting
query do not share a relation name or a variable, and since we additionally assume tuple-independence, it follows
that the probability of each atom is independent. Thus, their probabilities can be computed separately and combined
afterwards using appropriate rules of probability.

Note that the observation for the independence is also valid for all different groundings of QH. For example,
the groundings QH[x/a] and QH[x/b], are probabilistically independent, since after applying a grounding over y, we
obtain mutually disjoint sets of ground atoms. That is, once x is mapped to different constants, then all mappings
for y will result in different sets of atoms. As a result, their probabilities can be computed separately and combined
afterwards. The decomposition of the safe query QH is depicted in Figure 2a in terms of a tree. The key ingredient
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C(x) ∧ R(x, y) ∧ D(x)

C(b) ∧ R(b, y) ∧ D(b)

R(b, a)

C(a) ∧ R(a, y) ∧ D(a)

R(a, b)

(a) Different branches of the tree do not share an atom,
which ensures independence.

C(x) ∧ R(x, y) ∧ D(y)

C(b) ∧ R(b, y) ∧ D(y)︸︷︷︸
!

R(b, a)

C(a) ∧ R(a, y) ∧ D(y)︸︷︷︸
!

R(a, b)

(b) Different branches of the tree share D-atoms, which
makes them dependent.

Figure 2: Decomposition trees of a safe (a) and an unsafe query (b), respectively. In each of the trees, left branch corresponds to the grounding
[x/a, y/b], and right branch corresponds to the grounding [x/b, y/a].

in this example is related to the variable x, which serves as a separator variable and allows us to further simplify
the query.

Definition 5.5 (separator variable). Let Q be a first-order query. A variable x in Q is a separator variable if x appears
in all atoms of Q and for any two different atoms of the same relation R, the variable x occurs in the same position.

For example, the query QNH has no separator variable, since neither x nor y serve as a separator variable. Intu-
itively, this means that the query cannot be decomposed into independent sub-queries. That is, two different ground-
ings QNH[x/a] and QNH[x/b] are not independent for QNH, since they do not necessarily result in mutually exclusive
sets of atoms once grounded over y, as shown in Figure 2b. The small dichotomy theorem uses other rules of proba-
bility theory to further simplify the query as we illustrate next.

Example 5.6. Consider the hierarchical query QH = ∃x, y C(x) ∧ R(x, y) ∧ D(x). To compute the probability of QH,
we first apply the decomposition based on the separator variable x, which yields

P(QH) = 1 −
∏
c∈C

1 − P(∃y C(c) ∧ R(c, y) ∧ D(c)),

Here, c ranges over the database constants, and the probability of the resulting expression can be computed by decom-
posing the conjunctions as

P(∃y C(c) ∧ R(c, y) ∧ D(c)) = P(C(c)) · P(∃y R(c, y)) · P(D(c)).

The probabilities of the ground atoms C(c), D(c) can be read off from the given probabilistic database; thus, it only
remains to apply the grounding in R(c, y), which results in

P(∃y R(c, y)) = 1 −
∏
d∈C

1 − P(R(c, d)).

The dichotomy for UCQs is much more intricate and a characterization of safe queries is unfortunately not easy.
Thus, an algorithm is given to compute the probability of all safe queries by recursively applying the simplification
rules on the query [50]. This algorithm is complete, i.e., when the algorithm fails on the query, then the query is
unsafe. Later, a version of the algorithm that targets ∀CNF queries, called LiftR, was proposed [52], which is also
complete for that query class.

5.2. Query Evaluation in Open-World Probabilistic Databases

We now study probabilistic query evaluation in OpenPDBs, focusing in the following decision problems that
extend probabilistic query evaluation to consider lower and upper probabilities for queries.
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Definition 5.7 (upper, lower probabilistic query evaluation). Given an OpenPDB G, a query Q and a value p ∈ [0, 1),
upper probabilistic query evaluation, denoted PQE, is to decide whether PG(Q) > p and lower probabilistic query
evaluation denoted PQE, is to decide whether P

G
(Q) > q. We write PQE(Q) (resp., PQE(Q)) to denote upper (resp.,

lower) probabilistic query evaluation for a fixed query Q. Both PQE and PQE can be defined over a particular query
language; thus, we write PQE(L) (resp., PQE(L)) to define PQE (respectively, PQE) on the class of L queries.

OpenPDBs model an infinite set of PDBs, and it may seem like an unsurmountable task to efficiently compute the
probability intervals KG(Q). As we show later, the problem can be simplified to consider only extremal probability
distributions that are obtained by setting the probability values of all elementary events to one of the extreme points.

Definition 5.8. Let G = (P, λ) be an arbitrary OpenPDB; we call a probability distribution P ∈ KG an extremal
distribution if for all open atoms t, either P(t) = λ or P(t) = 0 holds.

We now show that to compute the upper and lower probability bounds, it is sufficient to consider the distributions,
where open atoms can take on the probability λ or 0 , i.e., no intermediate choices need to be examined.

Theorem 5.9. Let G be an arbitrary OpenPDB and Q an FO query. There exist extremal distributions P,P ∈ KG such
that P(Q) = P

G
(Q), and P(Q) = PG(Q).

Clearly, there are exponentially many extremal distributions, each of which sets the probability of (at least) one
atom to a different extreme. Thus, Theorem 5.9 suggests a naı̈ve query answering algorithm: generate all extreme
distributions P, compute P(Q), and report the minimum and maximum. This is very inefficient, as it requires expo-
nentially many calls in the number of open-world atoms. Note that the monotonicity of unions of conjunctive queries
allows us to further simplify query evaluation. In essence, we can simply choose the minimal (resp., maximal) bound
for every atom and the resulting probability for the UCQ is ensured to be minimal (resp., maximal). Thus, the lower
probabilities of conjunctive queries in OpenPDBs can be computed using a standard PDB algorithm. To compute
the upper bounds, we can construct a new PDB from the OpenPDB, by adding all the open facts with default upper
probabilities λ and simply reuse standard algorithms developed for PDBs.

Theorem 5.10. Let G = (P, λ) be an arbitrary OpenPDB, Q a UCQ and Pλ the completion that sets the probabilities
of all open tuples to λ. Then, it holds that KG(Q) = [PP(Q),PPλ (Q)].

Observe that in OpenPDBs, we can easily recover the upper (resp., lower) probability of a query from the
lower (resp., upper) probability of its negation, as shown next.

Lemma 5.11. Let G = (P, λ) be an OpenPDB and Q a first-order query. It holds that PG(Q) = 1 − P
G

(¬Q) and
P
G

(Q) = 1 − PG(¬Q).

The construction given in Theorem 5.10 is still not very efficient, as it adds all the atoms to the PDB, which grows
polynomially in the domain size. Unfortunately, this is impractical for PDBs with a large domain. Indeed, on the
Sibling example from Section 3.1.2, the upper bound would have to be computed on a 196 exabyte closed-world
PDB. Thus, an important question is whether this grounding can be avoided, as we investigate next.

Note that the lower probability of a UCQ in OpenPDBs can be computed with any closed-world PDB algorithm.
We present an algorithm, called LiftRO (Algorithm 1), which can be used to compute the upper probability of a UCQ
in OpenPDBs. LiftRO performs operations on ∀CNF formulas, i.e., unions of CNF formulas. More specifically, LiftRO
takes as input an OpenPDB G = (P, λ) over a domain, and a negated UCQ Q as an input, and outputs P

G
(Q). Since we

can compute the upper probability of any UCQ, from the lower probability of its negation, i.e., PG(Q) = 1 − P
G

(¬Q′)
for any query Q by Lemma 5.11, this algorithm can be used directly to compute the upper probability of a given UCQ
in OpenPDBs.

Preprocessing. The algorithm assumes that any input query is preprocessed such that (i) it does not contain any
constant symbols and (ii) all variables appear in the same order in each predicate occurrence in Q. This preprocessing
can be done in polynomial time in data complexity and therefore it is efficient. Preprocessing is necessary for several
reasons; most importantly, in order to capture all safe queries by an algorithm. Let us first present the details of the
preprocessing.
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Definition 5.12 (shattering, ranking). A first-order query Q is shattered if it does not contain any constants. A first-
order query Q is ranked if there exists a total order ≺ on its variables such that for every atom R(~x) of arity k ≥ 2,
whenever xi, x j occur in R(~x) and xi occurs before x j then xi ≺ x j; in particular, no atom contains the same variable
twice.

Let us briefly illustrate the process of ranking on a simple example.

Example 5.13. Consider the query ∃x, y S(x, y) ∧ S(y, x), which is not ranked, since the variables x and y occur in
different orders in the same predicate. To rank this query, we first split the predicate S into three predicates Sx≺y, Sy≺x

and Sx=x. We then define a total order ρ on the database constants (say, a and b) and split the S-atoms in the PDB
such that all occurrences of

– S(a, b) is replaced with Sx≺y(a, b) if a ≺ b,

– S(a, b) is replaced with Sy≺x(b, a) if b ≺ a,

– S(a, a) is replaced with Sx=x(a),

– S(b, b) is replaced with Sx=x(b).

This ensures that all appearances of the variables in some atom respect the order. Then, the ranking of the example
query ∃x, y S(x, y) ∧ S(y, x) is given as: ∃x, y (Sx≺y(x, y) ∧ Sy≺x(x, y)) ∨ ∃xSx=x(x). Intuitively, this preprocessing
partitions the predicates and the corresponding atoms in the database with respect to some ordering. It is easy to see
that this transformation preserves the semantics; for details, we refer to the dichotomy result of Dalvi and Suciu [50].

It has been shown that the preprocessing does not affect the probability computation in PDBs: let Q be a query, P
be a PDB, and Qr, Pr, their rankings. Then, it holds that PP(Q) = PPr (Qr). This clearly translates to OpenPDBs, since
once a λ-completion is chosen for all open atoms, we obtain a single ranked PDB (assuming we added a polynomial
number of atoms to the database with zero probability). Thus, it is easy to conclude that this preprocessing preserves
the semantics also for OpenPDBs.

Ranking can be done in linear time in PDBs, but for OpenPDBs, this is unfortunately not always the case, since we
also have to consider the open atoms. Thus, in the worst case, ranking will cause a polynomial blow-up seems to be
unavoidable in OpenPDBs. Hence, it remains open whether the overall polynomial cost can be avoided in OpenPDBs.
We note, however, that ranking is only needed for repeating relation symbols, i.e., if the query is self-join free, then
this process is not needed. Therefore, this preprocessing can be limited to repeating relation symbols so as to avoid
to polynomial blow-up as much as possible. In the presented algorithm, we assume that the query and the PDB are
preprocessed in this way.

Lifted Inference Algorithm. Algorithm 1 is an adaptation of the LiftR algorithm [52], which goes back to the algorithm
givcen by Dalvi and Suciu [50]. This algorithm is called LiftRO, where O stands for open.

Step 0. Recall that the given UCQ is negated in the preprocessing to obtain a ∀CNF query Q. As a result, all atoms
appear negatively in Q. The base case of the algorithm applies when the query is simply a negated ground atom ¬t.
In this case the probability of the query is trivial to compute: if the atom appears in the PDB with a probability p, then
the algorithm returns (1 − p); otherwise, it is an open atom and the algorithm returns (1 − λ).

Step 1. The first step is to rewrite the query Q into a union (disjunction) of CNF sentences, or UCNF. For example,
consider the CNF formula: (R(x) ∨ S(y, z)) ∧ (S(x, y) ∨ T(x)) which can be rewritten as the disjunction of the CNF
formulas:

R(x) ∧ S(x, y) union R(x) ∧ T(x) union S(y, z) ∧ S(x, y) union S(y, z) ∧ T(x).

The intuition behind this transformation is to produce multiple disjuncts from the given CNF in order to make (dis-
junctive) independencies explicit (if there are any). Note that such a rewriting does not always produce multiple
disjuncts, in which case, the formula is clearly also a CNF.
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Algorithm 1 LiftRO(Q,P, λ,∆), abbreviated by L(Q,P)

Require: A negated UCQ Q, an OpenPDB G = (P, λ), and domain ∆.
Ensure: The lower probability P(Q) in the OpenPDB G = (P, λ) over domain ∆.

1: Step 0 Base of recursion
2: if Q = ¬t, where t is a ground atom then
3: if 〈t : p〉 ∈ P then return (1 − p) . Closed atoms
4: else return (1 − λ) . Open atoms
5: Step 1 Rewriting of the query
6: Convert Q to UCNF: QUCNF = (∀~x Q1) ∨ . . . ∨ (∀~y Qm)
7: Step 2 Decomposable disjunction . Probabilistically independent disjuncts
8: if m > 1 and QUCNF = Q1 ∨ Q2 where Q1 ⊥ Q2 then
9: q1 ← L(Q1,P|Q1

) and q2 ← L(Q2,P|Q2
)

10: return 1 − (1 − q1) · (1 − q2)
11: Step 3 Inclusion-exclusion
12: Apply cancellations/minimizations on Q.
13: if m > 1 but QUCNF has no independent sub-query Qi then
14: return

∑
s,∅,s⊆[m](−1)|s|+1 · L(

∧
i∈s Qi,P|∧i∈sQi

) . [m] = {1, . . . ,m}

15: Step 4 Decomposable conjunction . Probabilistically independent conjuncts
16: Convert Q back to CNF: QCNF = ∀~x Q1 ∧ ... ∧ Qk

17: if Q = Q1 ∧ Q2 where Q1 ⊥ Q2 then
18: return (L(Q1,P|Q1

) · L(Q2,P|Q2
))

19: Step 5 Decomposable universal quantifier . Probabilistically independent projection
20: if Q has a separator variable x then
21: let E be all constants that appear as x-argument in P
22: qc ←

∏
e∈E L(Q[x/e],P|x=e ) . Ground and recurse over known atoms

23: qo ← L(Q[x/e], ∅) for some e ∈ ∆ \ E . Recurse over a canonical open atom
24: return qc · q

|∆\E|
o . Generalize the computation to the size of the domain

25: Step 6 Fail

Step 2. The second step applies when the resulting UCNF has multiple disjuncts (or equivalently if it is not a CNF).
The algorithm checks whether it is possible to partition the query into two UCNF formulas such that Q = Q1 ∨ Q2,
where Q1 and Q2 do not share any relational symbols, denoted Q1 ⊥ Q2, which ensures independence of Q1 and Q2.
Then, it applies the probabilistic decomposition rule for disjunction:

P(Q) = 1 − (1 − P(Q1)) · (1 − P(Q2)).

It is easy to verify the correctness of this decomposition provided that Q1 and Q2 are independent terms which holds,
as they do not share any relation symbols. The main idea in the second step (as well as in the remaining steps) is to
recurse on simplified queries, using standard simplification rules of probability. Importantly, in the various recursions,
the algorithm shrinks the set of atoms in the given PDB P. Specifically, P|Q denotes the subset of P, containing only
atoms for the predicates that appear in Q.

Step 3. The third step also applies only when the UCNF has multiple disjuncts and recurses using the inclusion-
exclusion principle:

P(Q) =
∑

s,∅,s⊆[m]

(−1)|s|+1 · P(∧i∈sQi).

The key aspect in this step is to apply cancellations before the inclusion-exclusion step. The idea is to remove
redundancies from the query and minimize it by checking for CNF formulas that are implied by others. This can be
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done using standard algorithms [53]. After simplifying the query, we also need to use the Möbius function to build an
implication lattice, and then, count how many times to include each subquery using the Möbius function, and finally,
remove subqueries whose inclusion-exclusion coefficients sum to 0 [50]. Importantly, note that these manipulations
are only on the query and, therefore, independent of the database.

Step 4. In the fourth step the query is rewritten back as a CNF. Then, the algorithm checks for independent sets of
clauses in the CNF such that Q = Q1 ∧ Q2, where Q1 and Q2 do not share any relational symbols. If this is the case,
then it applies the probabilistic decomposition rule for conjunction:

P(Q) = P(Q1) · P(Q2).

Step 5. The fifth step is the workhorse of LiftRO, and the key difference with the LiftR algorithm [52]. It searches
for a separator variable. The existence of a separator variable implies that for any two distinct instantiations e1, e2
of the separator, the queries Q[x/e1] and Q[x/e2] are independent. Hence, by multiplying P(Q[x/e]) for all e in the
domain ∆, we obtain P(Q).

The implementation of step five in LiftRO performs one key optimization over this simple multiplication. First, note
that x appears in exactly one argument position in Q for every predicate. We call these arguments the x-arguments.
Step five partitions the constants in the domain into two sets: (i) the constants E that appear as x-arguments in the
tuples in P, and (ii) all other constants, denoted by ∆ \ E.

For (i), LiftRO still enumerates all instantiations of x and computes their probability separately. For (ii), it suffices
to compute the probability of a single instantiation of x. All instantiations with constants from ∆ \ E will have the
same probability, as they do not depend on the tuples in P. The probability of their conjunction is computed by
exponentiation. Moreover, in the recursive calls for [x/e], we can pass along the subset of the atoms P|x=e where all
x-arguments are constant e.

Step 6. Finally, LiftRO can fail in step six, yielding no answer, which implies that the query in unsafe, as we shall
discuss in the next section.

6. Data Complexity Results

We first study data complexity, and obtain complexity results relative to different query languages under consid-
eration. We start with an overview of the data complexity results.

6.1. Overview of the Data Complexity Results

Our open-world semantics is supported by a query evaluation algorithm for UCQs. This class of queries, cor-
responding to monotone ∃DNF, is particularly well-behaved and the focal point of database research. Perhaps the
largest appeal of PDBs comes from a dichotomy result by Dalvi and Suciu [50], perfectly delineating which unions
of conjunctive queries can be answered efficiently in data complexity. Their algorithm runs in polynomial time for all
efficient queries, called safe queries, and recognizes all others to be #P-hard (which translates into PP-hardness under
polynomial-time Turing reductions).

We give an algorithm LiftRO, which extends the PDB algorithm of Dalvi and Suciu [50] and inherits its elegant
properties: all safe queries run in polynomial time, and whenever our algorithm fails, then the query is PP-hard. Thus,
for unions of conjunctive queries, we are able to show that the data complexity dichotomy in PDBs can be lifted to
OpenPDBs, as depicted in Figure 3a.

Importantly, we show that LiftRO runs in linear time in the size of the ranked OpenPDB (resp., PDB), under certain
assumptions. More specifically, by the properties of LiftRO, we show that the original dichotomy of PDBs can be
strengthened under mild assumptions, i.e., (i) unit arithmetic cost assumption, that is, the complexity of all arithmetic
operations in the algorithmis fixed, and (ii) the domain of the input PDB is sorted, e.g., it is an integer domain.
Hence, all safe queries can be computed in linear time in the size of the input PDBs. The fact that the original
PDB dichotomy [50] can be strengthened in this way is perhaps not technically surprising. However, this practically
significant observation has not been made earlier in the literature. It is open whether the linear-time computation can
be extended to the case of OpenPDBs for the full class of safe UCQs. The algorithm LiftRO runs in linear-time in
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(b) Data complexity results for the problems PQE(L), PQE(L), and
PQE(L) for the query classes L ∈ {∃FO,∀FO,FO} ∪ {∃FOs,∀FOs,FOs}.

Figure 3: Data complexity map for OpenPDBs in comparison to PDBs. Figure 3a depicts the dichotomy results for UCQs: safe (resp., unsafe)
UCQs for PDBs coincide with safe (resp., unsafe) UCQs for OpenPDBs. Figure 3b depicts the complexity results for more general query classes
∀FO, ∃FO, and FO, and their restricted safe fragments; for each such query class, the complexity of probabilistic query evaluation increases in
OpenPDBs, compared to PDBs.

the size of the preprocessed, ranked OpenPDB, rather than the input OpenPDB, and this preprocessing can lead to a
polynomial blow-up in the case of OpenPDBs. We note, however, that such preprocessing is not needed for, e.g. self-
join-free queries, and, in this case, the linear-time algorithm applies also to OpenPDBs under the same assumptions.

We then extend our analysis to other query languages, which results in a richer complexity landscape. All results
for ∃FO, ∀FO, and FO queries for upper and lower probabilistic query evaluation are depicted in Figure 3b (upper
part). Our results suggest that the complexity of open-world reasoning can go up significantly with negation. Specif-
ically, we first show that PQE(∃FO), PQE(∀FO), and PQE(FO) are all PP-complete in data complexity for PDBs.
On the other hand, PQE(∃FO), PQE(∀FO), and PQE(FO) are NPPP-complete in data complexity for OpenPDBs.
Similarly, the corresponding lower probabilistic query evaluation problems are shown to be coNPPP-complete in data
complexity for OpenPDBs.

Knowing that all safe (resp., unsafe) queries remain safe (resp., unsafe) in OpenPDBs for UCQs, we pose the
following question: could this also be the case for more expressive queries, where the satisfaction relation is not
monotone? To make this concrete, we denote by ∃FOs, ∀FOs, and FOs, the subclasses of the query classes ∃FO, ∀FO,
and FO, respectively, where each such subclass contains only queries, which are safe for PDBs. We note that the
classification status of nonmonotone query classes still remain open in PDBs, i.e., there is no known classification for
such general query classes. We show that the class of safe PDB queries are not preserved when we consider Open-
PDBs. Specifically, we identify a ∀FOs query, which is safe for PDBs, but becomes NP-complete on OpenPDBs. All
results for ∃FOs, ∀FOs, and FOs queries for upper and lower probabilistic query evaluation are depicted in Figure 3b
(lower part).

OpenPDBs are closely related to credal representations, and thus our complexity results align with that of credal
networks which also show an increase from P to NP and from PP to NPPP [54] compared to Bayesian networks [55].
Nevertheless, one source of hardness for probabilistic inference in credal networks is due to the conditional depen-
dencies encoded in the network structure, which is very different from OpenPDBs, where the hardness stems from
rich structure of queries.

6.2. Results for Unions of Conjunctive Queries

We start our analysis with UCQs, and discuss the implications of Algorithm 1, in detail. The original di-
chotomy [50] is supported by an algorithm similar to LiftRO: if this algorithm fails, then the query is #P-hard, and
if it does not fail, it runs in polynomial time. This dichotomy-supporting algorithm has one major difference com-
pared to LiftRO, aside from our support for open-world inference. When it applies the inclusion-exclusion step, it
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performs cancellations to avoid computing some of the recursive steps. This is a key aspect of the algorithm that
ensures efficiency for all safe queries. Based on Theorem 5.10 and Corollary 5.3 we can lift the dichotomy result for
UCQ queries in PDBs to OpenPDBs.

Corollary 6.1 (dichotomy). Let Q be a UCQ. Then, PQE(Q) is either in P or it is PP-complete for OpenPDBs in data
complexity under polynomial-time Turing reductions. Moreover, a UCQ Q is safe in OpenPDBs if and only if it is safe
in PDBs.

We already emphasized that the reduction given in Theorem 5.10 for the class of safe queries can be inefficient
in practical terms as the construction results in a polynomial blow-up. Similarly, the preprocessing step in LiftRO
algorithm, can be polynomial. Ignoring the preprocessing, we show that, LiftRO extended with cancellations in the
inclusion-exclusion step, runs in linear time. For this to hold, we need two assumptions: (i) unit arithmetic cost
assumption, that is, the complexity of all arithmetic operations in the algorithm is fixed, and (ii) the domain of the
OpenPDB is sorted, e.g., it is an integer domain. Intuitively, the first assumption is needed since the cost of arithmetic
operations can grow beyond linear in the size of the probability values. The second assumption is necessary to ensure
that we always recurse over the subset of atoms, in an ordered way, so as to avoid revisiting them.

Theorem 6.2. Let G = (G, λ) an OpenPDB over an integer domain (or, any sorted domain). Assuming unit arithmetic
cost, the following results hold. The algorithm LiftRO runs in polynomial time in data complexity. The probability of
any safe UCQ can be evaluated in linear time in the size of the ranked OpenPDB G in data complexity. Moreover, any
safe UCQ which is self-join-free can be evaluated in linear time in the size of the input OpenPDBG in data complexity.

The algorithm LiftRO clearly runs in polynomial time in data complexity (while it answers Fail for unsafe queries).
It is also easy to see that it is linear in the size of the ranked OpenPDB G in data complexity. Notice though, that the
ranked OpenPDB can be polynomially larger than the original given one. The final statement states that, if the query
is additionally self-join-free, in which case, ranking is not needed, then LiftRO runs in linear time in the size of the
input OpenPDB G in data complexity.

Theorem 6.2 implies that the algorithm LiftR, which is a special case of LiftRO, also runs in linear time. While the
preprocessing can be polynomial in OpenPDBs, it remains linear in PDBs. Overall, these imply a stronger dichotomy
for PDBs.

Corollary 6.3. Let Q be a UCQ, and P be a PDB over an integer domain (or, any sorted domain). Assuming unit
arithmetic cost, PQE(Q) for PDBs over integer domains is either in linear time, or it is PP-complete.

This result extends the original dichotomy for PDBs from polynomial time to linear time under the given as-
sumptions. This observation appears to be novel in the PDB literature. The original algorithm [50] is not shown to
be linear-time. Existing linear-time probabilistic query evaluation complexity results, see e.g. [56], do not apply to
unions of conjunctive queries. The key insight behind our linear-time algorithm is the projection of the probabilistic
database only on the relevant atoms for each recursive call. This concludes our data complexity analysis for unions of
conjunctive queries.

6.3. Results Beyond Unions of Conjunctive Queries
We now focus on query languages that strictly contain UCQs, i.e., the query classes ∃FO, ∀FO, and FO. Let us

start our data complexity analysis with PDBs. We give a general theorem which shows that the probabilistic query
evaluation problem is PP-complete in PDBs for all query languages under consideration.

Theorem 6.4. PQE(∃FO), PQE(∀FO), and PQE(FO) are PP-complete for PDBs in data complexity.

For the membership results, the main idea is to code each world induced by a PDB into a nondeterministic Turing
machine such that each world satisfying (resp., not satisfying) the query corresponds to a number of accepting (resp.,
rejecting) computation branches proportional to its probability. By additionally introducing artificial accept (resp.,
reject) branches, we ensure that the majority of the runs of the nondeterministic Turing machine answer yes if and
only if the given instance of probabilistic query evaluation has a positive answer.

To show PP-hardness (under many one reductions) we give a reduction from counting the satisfying assignments
of a Boolean formula: given a quantified Boolean formula of the form Φ B Cc x1, . . . , xn φ, where C represents the
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counting quantifier and φ = φ1 ∧ · · · ∧ φk is a propositional formula in 3CNF, defined over the variables x1, . . . , xn,
decide whether Φ is valid. Intuitively, this problem amounts to checking whether there are c assignments for x1, . . . , xn

that satisfy φ, which is a PP-complete problem [33].
We proceed with the data complexity results for OpenPDBs. Let us start with a simple observation, which is very

useful for OpenPDBs. By Lemma 5.11, we know that P(Q) = 1 − P(¬Q). In particular, this implies that:

PG(Q) > p if and only if it is not the case that P
G

(¬Q) ≥ 1 − p,
P
G

(Q) > p if and only if it is not the case that PG(¬Q) ≥ 1 − p,

for any OpenPDB G, query Q and threshold value p. Recall that ≥ can be replaced with > by Lemma 5.2. Then,
since ∀FO and ∃FO queries are dual to each other, probabilistic query evaluation for these queries can be reduced to
each other by taking the complement of the respective problem. In essence, all complexity results obtained for the
problem PQE(∀FO) immediately hold for the complement of the problem PQE(∃FO), and vice versa. Similarly, all
complexity results for the problem PQE(∀FO) hold for the complement of the problem PQE(∃FO), and vice versa.
We refer to this as the duality property and use it to simplify the proofs of some of the theorems. Practically speaking,
this allows us to state the results regarding both to ∃FO and ∀FO queries, while providing the proof details only for
one of these classes. It is worthwhile to note that lower and upper probabilistic query evaluation for the same query
language are not dual to each other, e.g., the result for PQE(∀FO) does not imply the result of PQE(∀FO), or vice
versa, and so such results are proven separately, but they nevertheless rely on similar ideas.

We have shown that the data complexity dichotomy for UCQs can be lifted from PDBs to OpenPDBs: all safe
(resp., unsafe) queries remain safe (resp., unsafe). Could this also be the case for more expressive queries, where the
satisfaction relation is not monotone? There is no obvious way of determining the completion that maximizes (or,
minimizes) the query probability for such query classes. Therefore, an intriguing question is, whether a nonmonotone
query, which is safe in PDBs, can become hard for OpenPDBs?

We note that the classification status of nonmonotone query classes still remain open in PDBs, i.e., there is no
known classification for such general query classes that perfectly delineates safe queries from unsafe ones; it is also
open whether such a dichotomy exists at all. We are only interested in knowing whether the class of safe queries
could possibly be preserved when we consider OpenPDBs. To make this concrete, let us denote by ∃FOs, ∀FOs, and
FOs, the subclasses of the query classes ∃FO, ∀FO, and FO, respectively, where each such subclass contains only
safe queries from the general class. For instance, ∀FOs ⊆ ∀FO, and every query Q ∈ ∀FOs is safe in PDBs, i.e., its
probability can be computed in polynomial time for any PDB. For these query classes, we obtain the following result.

Theorem 6.5. PQE(FOs) is NP-complete and PQE(FOs) is coNP-complete for OpenPDBs in data complexity. Fur-
thermore, there exists a query QSAFE ∈ ∀FOs such that PQE(QSAFE) is NP-complete for OpenPDBs in data complexity.
This implies that PQE(∀FOs) is NP-complete, and, by duality, PQE(∃FOs) is coNP-complete, for OpenPDBs in data
complexity.

The membership results are rather straight-forward. PQE(FOs) can be decided by a nondeterministic Turing
machine in polynomial time: given an OpenPDB, and a query Q ∈ FOs, we can guess a completion (which is a
PDB), and, based on this completion, we can verify whether the probability of the query exceeds a given value p
in polynomial time in data complexity (since the query is assumed to be safe). By similar arguments, we can also
conclude that PQE(FOs) is in coNP. These membership results then also apply to ∃FO and ∀FO queries.

Theorem 6.5 additionally shows that there are some queries, which are safe for PDBs, but become hard for
OpenPDBs. Briefly, once negation is allowed, it is not always easy to determine the completion upon which the
maximal (resp., minimal) probability can be computed. We choose a ∀FOs query, and show that this query is safe in
PDBs, but it is NP-hard in OpenPDBs via a reduction from satisfiability of propositional 3CNF formulas. This result
is quite intricate, as the class of safe queries enjoy properties which make them easy to compute in PDBs, and, in
many cases, the same properties allow us to locally optimize our choices for the bounds in OpenPDBs, i.e., to choose
the right completion while avoiding a combinatorial blow-up. Therefore, it is a non-trivial task to identify a query
which is safe for PDBs, and, at the same time, hard for OpenPDBs. The full proof involves a series of transformations
in order to define such a query. The main computational difference between the two different data models is in the
application of the inclusion-exclusion principle: while we obtain cancellations in PDBs, which make the computation
of the resulting terms easy, this is not the case for OpenPDBs, mainly due to interacting choices.
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Figure 4: Bounded-arity complexity of PQE(L) and PQE(L) for OpenPDBs in comparison to PQE(L) for PDBs. The given results cover query
languages L ∈ {UCQ,∃FO,∀FO,FO}.

We extend our analysis to more general queries, e.g., the class of queries ∃FO, ∀FO, or FO. How can an arbitrary
query (i.e., potentially unsafe for PDBs) from these classes be evaluated in OpenPDBs? The following theorem states
our results for these query languages.

Theorem 6.6. Let L ∈ {∃FO,∀FO,FO}. Then, PQE(L) is NPPP-complete, and PQE(L) is coNPPP-complete for
OpenPDBs in data complexity.

The membership results follow from similar ideas as before: guess a completion and verify whether the probability
of a given query exceeds a threshold relative to this completion. Differently, this verification step now requires a PP
oracle, since probabilistic query evaluation over these query classes are PP-complete, as shown in Theorem 6.4. This
implies that PQE(FO) can be decided in NPPP, since we can guess a completion, and based on this completion, we
can decide whether the query probability exceeds a threshold, by calling a PP oracle. By analogous arguments, we
conclude that PQE(FO) is in coNPPP. These upper bounds clearly apply to ∃FO and ∀FO queries.

For the hardness results, it is important to note that, unlike in Theorem 6.5, we now have the liberty to choose an
unsafe query. That is, even after identifying the right completion, we still need to make a probabilistic computation,
which is PP-hard. We make use of this fact to prove the respective hardness results. The first reduction is from an
NPPP-complete problem: given a quantified Boolean formula of the form Φ = ∃x1, . . . , x` Cc y1, . . . , ym φ, where C
represents the counting quantifier and φ = φ1 ∧ · · · ∧φk is a propositional formula in 3CNF, defined over the variables
x1, . . . , x`, y1, . . . , ym, decide the validity of Φ. This problem is NPPP-complete [33]. Intuitively, our construction
ensures that choosing the maximal completion for an OpenPDB, corresponds to finding a partial assignment to the
variables x1, . . . , x` in Φ, which can be extended to at least c satisfying assignments. We use a variant of this problem
to obtain the respective coNPPP-hardness result.

7. Combined Complexity Results

In the context of databases, the study of combined complexity is less popular, as data complexity often captures
the real-world complexity of the relevant problems in a more adequate manner. On the other hand, it is not hard to
imagine scenarios where a safe query (in data complexity) could require super-polynomial time in the query. Similar
observations motivated some work on this subject; see e.g. [57] where the goal is to isolate cases where probabilistic
query evaluation is tractable in combined complexity. We therefore expand our analysis to the combined complexity
of probabilistic query evaluation for both PDBs and OpenPDBs. Importantly, we make the bounded-arity assumption,
i.e., all relations are at most of arity k for some fixed k. Let us first give an overview of the combined complexity
results.

7.1. Overview of the Combined Complexity Results

There is yet another subtle reason for (mostly) abandoning combined complexity analysis in PDBs, which is of a
technical nature: most of the existing data complexity results (including the data complexity dichotomy) are shown
under Turing reductions, which leads to the collapse of many interesting classes, that could make a difference in the
case of combined complexity. Our combined complexity analysis, as many other results in this work except from
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dichotomy results, are under many-one reductions, which allows us to obtain more fine-grained characterizations. All
bounded-arity combined complexity results are summarized in Figure 4.

Arguably, the most interesting result for PDBs is to show that the problem PQE(UCQ) is PPNP-complete in
bounded-arity combined complexity, while it is PP-complete in the data complexity. The standard query evalua-
tion problem is already NP-hard in bounded-arity combined complexity for UCQs. Intuitively, this implies that for
every world, we need a verification step that is NP-hard. If we restrict our attention to acyclic queries, however, the
query evaluation can be done in polynomial time (and even better, see e.g. [58]), and so, probabilistic query evaluation
for acyclic conjunctive queries remains in PP. Similarly, query evaluation is PSpace-complete for arbitrary FO queries
(where the quantifier nesting is not necessarily bounded). It is easy to see that this class dominates the probabilis-
tic query evaluation problem. All results given for PDBs also hold for combined complexity, i.e., if we remove the
bounded-arity assumption.

The results for OpenPDBs can be summarized as follows. First of all, the bounded-arity combined complexity
results for OpenPDBs coincide with PDBs when we consider UCQs. This is due to the same reason as in data
complexity: for UCQs, we can efficiently reduce upper and lower probabilistic query evaluation in OpenPDBs to
probabilistic query evaluation in PDBs. For query languages ∃FO and ∀FO. We have already shown (co)NPPP-
hardness results for the data complexity, which clearly also apply to bounded-arity combined complexity. However,
these problems do not become harder, despite the fact that query evaluation relative to these queries (which is required
for verification) is harder in bounded-arity combined complexity. Intuitively, this holds, since the complexity classes
NPPP, and coNPPP are strong enough to do these harder verifications.

7.2. Derivation of the Combined Complexity Results
We now focus on individual combined complexity results, and start our analysis with PDBs. Our first result

shows that probabilistic query evaluation for the class of queries UCQ, ∃FO, ∀FO is complete for PPNP for PDBs in
combined complexity.

Theorem 7.1. PQE(UCQ), PQE(∃FO), and PQE(∀FO) is PPNP-complete for PDBs in bounded-arity combined com-
plexity. These complexity bounds also hold without the bounded-arity assumption.

The membership results follow from similar ideas to those given for Theorem 6.4, i.e., coding each world induced
by a PDB into a nondeterministic Turing machine such that the majority of its runs answer yes if the given instance of
probabilistic query evaluation has a positive answer. The main difference is that the complexity of query evaluation
on standard databases (i.e., the verification step) is harder in combined complexity: determining whether a database
(induced by a given PDB) satisfies the query is NP-complete for ∃FO queries (and UCQs), and coNP-complete for
∀FO queries. Hence, we additionally require calls to an NP oracle to do such verifications.

For hardness, we show that PQE(UCQ) is PPNP-hard, by giving a reduction from the problem of deciding validity
of formulas of the form Φ = Cc x1, . . . , xm∃y1, . . . , yn φ1 ∧ φ2 ∧ · · · ∧ φk, where every φi is a propositional clause over
x1, . . . , xm, y1, . . . , yn, and k,m, n≥ 1 [33]. Importantly, all the predicates used in the proof are of a bounded arity; that
is, the proof applies to the bounded-arity combined complexity. The key reason for this hardness is again due to the
query evaluation problem for UCQs being NP-complete on standard databases. In fact, if we restrict our attention
to e.g. acyclic conjunctive queries, for which query evaluation problem is in polynomial time, probabilistic query
evaluation for these queries will remain in PP in combined complexity.

It only remains to determine the complexity of FO queries for PDBs in combined complexity. We obtain the
following result for probabilistic query evaluation over FO queries for PDBs.

Theorem 7.2. PQE(FO) is PSpace-complete for PDBs in bounded-arity combined complexity. This result also holds
without the bounded-arity assumption.

Observe that PSpace-hardness of PQE(FO) is immediate since query evaluation is PSpace-complete in standard
databases for FO queries (and a database can be viewed as a special PDB). The argument for membership is to walk
through all worlds induced by a PDB (each of which is of polynomial size), and sum out their probabilities, if they
satisfy the query (which can be determined in polynomial space). This concludes our analysis for PDBs in combined
complexity.

We extend our analysis to OpenPDBs in bounded-arity combined complexity. Our first result is for UCQs, which
coincides with the bounded-arity combined complexity results given for PDBs.
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Theorem 7.3. PQE(UCQ) and PQE(UCQ) is PPNP-complete for OpenPDBs in bounded-arity combined complexity.

This result follows again by the fact that the satisfaction relation is monotone for UCQs, which allows us to
efficiently determine the maximal (resp., minimal) completion for a given OpenPDB, and reduce the problem to
probabilistic query evaluation in PDBs. The only subtlety is that each such completion must be of polynomial size,
and this is ensured by the fact that the maximal arity of relations is fixed.

Looking into ∃FO and ∀FO queries, we observe a somewhat more interesting phenomenon: the bounded-arity
combined complexity of the studied problems coincides with the data complexity of the respective problems.

Theorem 7.4. Let L ∈ {∃FO,∀FO}. Then, PQE(L) is NPPP-complete, and PQE(L) is coNPPP-complete for Open-
PDBs in bounded-arity combined complexity.

It may appear somewhat surprising that these results coincide with the data complexity, since the verification
step, which requires query evaluation is hard in combined complexity, as discussed earlier. Intuitively, we can decide
PQE(∃FO) in CNP, where C = NPPP, by applying similar ideas to those in Theorem 6.6, and, by additionally calling
an NP oracle. It is then sufficient to note that NPPP does not gain additional computational power by calling another
NP oracle [31]. Similar arguments then also apply to PQE(∃FO), and other cases, yielding the membership results.
Hardness results are an immediate consequence of Theorem 6.6, i.e., the respective hardness results given for data
complexity.

Finally, as for PDBs, the complexity of classical query evaluation dominates the complexity of probabilistic query
evaluation in OpenPDBs.

Theorem 7.5. PQE(FO) and PQE(FO) are PSpace-complete for OpenPDBs in bounded-arity combined complexity.

The study of combined complexity without the bounded arity assumption is a somewhat intricate notion in Open-
PDBs in the following sense: since neither the arity nor the schema is fixed, a completion can grow exponentially,
leading to a very high complexity, i.e., we need to perform probabilistic inference over exponentially large comple-
tions. These are beyond the focus of our work. We note, however, that a similar observation is also valid for other
representations such as Markov Logic Networks, i.e., the size of each world is exponential if the arity of the predicates
is not fixed, and with this remark, we conclude our complexity analysis.

8. Related Work

The management of uncertain and probabilistic data is an important problem in many applications of artificial
intelligence, e.g., data integration from diverse sources, predictive and stochastic modeling, applications based on
(error-prone) sensor readings, and also for automated knowledge base construction [1, 2, 3, 4, 5, 6]. The most basic
data model for managing large uncertain data is that of probabilistic databases [14]. Probabilistic database literature
is rich, as it is almost as old as traditional database research. We note that the first formulation of possible world
semantics in the context of databases is due to Imilieski and Lipski [59], and the work of Fuhr and Röllecke [60]
has been very influential in probabilistic database research. For a detailed historical treatment, we refer the reader to
standard texts in the literature [14]; here, we mostly focus on recent advancements in probabilistic data and knowledge
bases, for which more details can be found in the recent surveys [38, 61].

It is well-known that query evaluation in probabilistic databases is a computationally demanding task, which
motivated a line of research aiming at fine-grained classification results. The first thorough study in the database
literature appears in the context of reliability analysis for queries, by Grädel, Gurevich and Hirsh [62], where, for
instance, the query C(x)∧R(x, y)∧C(y) is shown to be #P-hard. Dalvi and Suciu obtained the small dichotomy result
on queries without self-joins [51], and eventually the complete dichotomy on UCQs [50]. There are results which
support first-order queries in probabilistic databases [63], but for queries with negation, only partial dichotomy results
are known [56]. Other dichotomy results extend the dichotomy for unions of conjunctive queries in various directions;
e.g., allowing for disequality (,) joins in the queries [64], or allowing for inequality (<) joins in the queries [65]. A
trichotomy result is given for queries with aggregation [66]. Amarilli and Ceylan [67] recently extended the dichotomy
for UCQs to infinite unions of conjunctive queries over binary signatures. This implies a dichotomy for a large class of
query languages beyond UCQs, including negation-free (disjunctive) Datalog, regular path queries, and a large class
of ontology-mediated queries on binary signatures.
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Our work is motivated by open-world reasoning. The open-world assumption is common in deterministic knowl-
edge bases, which are widely studied in the context of ontology languages, mostly based on description logics [68], or
Datalog± [69]. Instead of posing the queries directly to the database, the idea is to use a logical theory (or ontology)
as a query interface, in order to obtain a more complete set of answers from an incomplete knowledge base via the
open-world assumption. This paradigm is known as ontology-mediated query answering [70], and the open-world
assumption is a driving force for ontology-based technologies. The literature on probabilistic extensions of ontology
languages is rich, and ontology-mediated queries for probabilistic databases have been investigated in the context of
both description logics [71, 72] and Datalog± [73, 74, 75, 40]. Importantly, these models are typically open-domain,
i.e., they allow reasoning over infinitely many objects in the domain (unlike our finite-domain assumption). There is
a key restriction in such models that allows to preserve some nice computational results: although reasoning is over
infinitely many objects, the query semantics is defined relative to probability distributions over known atoms in the
database to ensure that the probability space remains finite. One subtle aspect is that these models employ certain
answer semantics, and so if a query is not entailed, its probability is set to zero [71, 72, 74]. That is, their seman-
tics partially import closed-world PDB semantics for non-entailments. Other models[73, 40] employ a semantics
closely related to Markov logic networks, while keeping the open-domain reasoning. We note that OpenPDBs are
extended with ontological knowledge [75] to allow for probabilities from a default interval for non-entailments, while
the ontology allows for open-domain reasoning. For further details on the semantic differences, such as open-domain
vs closed-domain, open-world vs closed-world models; we refer the reader to [61], where a detailed classification,
including OpenPDBs, is given.

Our work draws inspirations from lifted inference [76] in avoiding explicit reasoning over all atoms, or constants:
our lifted inference algorithm operates on first-order structures to exploit symmetries thereby avoiding a complete
grounding. In this respect, our work brings together the high-level reasoning of lifted inference and the data-centric
reasoning of probabilistic databases. OpenPDBs are also closely related to credal networks [48]. The major difference
is that one source of hardness for probabilistic inference in credal networks is due to the conditional dependencies
encoded in the network structure, which is very different from OpenPDBs, as such dependencies stem from the
query in OpenPDBs. Work in probabilistic logic programming has studied their complexity for different semantics,
including credal semantics [77]. OpenPDBs also motivated further research to extend the open-world probabilistic
database model to have schema-level constraints on completion probabilities [78]. OpenPDBs are defined over a
finite domain, and the work of Grohe and Lindner [79] extends the open-world probabilistic database model to infinite
universes.

Weighted model counting (WMC) has emerged as a unifying approach for probabilistic inference in various data
models [80, 81]. Query answering in probabilistic databases reduces to WMC over DNF structures, as every con-
junctive query is equivalent to a DNF via its lineage representation (which is of polynomial size in data complexity).
WMC over DNFs is clearly #P-hard [27], which motivated two paradigms for solving this problem. One prominent
approach for WMC is based on knowledge compilation [82, 83], which compiles the problem in a target language,
upon which the respective task is tractable. That is, the computational overhead is pushed to an offline phase, amor-
tized by a large number of online queries. Knowledge compilation has been studied also in the context of PDBs [84].
Another prominent approach for WMC is approximate solving, which provides approximations of the model count as
opposed to an exact solution. There are numerous approximation algorithms for weighted model counting: a classical
result from Karp, Luby and Madras [85] asserts that weighted model counting over DNF structures admits a fully
polynomial randomized approximation scheme (FPRAS). Hashing-based approximation techniques [86] can solve the
unweighted model counting problem on DNF structures with probabilistic accuracy guarantees. These algorithms are
not very scalable in practice; recently, a neural model counting approach has been proposed [87] for fast weighted
model counting, which does not provide accuracy guarantees, but experiments suggest a reliable prediction accuracy.

Many probabilistic relational database management systems, dedicated for large-scale probabilistic data process-
ing, have been developed, such as MystiQ [88] and SPROUT [89]. Importantly, SPROUT [89] also supports a type of
open-world inference in the sense that it enables querying “Google Squared” tables which are extracted from open-
world text without a fixed vocabulary. Other approaches include Slimshot [39] which can encode complex relations
over a closed-domain, and Tuffy [90] which uses Markov chain Monte Carlo for probabilistic inference.
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Summary and Outlook

We proposed a probabilistic data model, called OpenPDBs, that acknowledges the incomplete nature of the knowl-
edge bases, as part of its semantics. In OpenPDBs, atoms that are not in the database still remain possible with some
default probability. This is in contrast with PDBs, where atoms that do not appear in the database are assigned a proba-
bility zero by the CWA. Our work builds on the foundations of tuple-independent PDBs [14]. In particular, we extend
the dichotomy result of Dalvi and Suciu [50], given for UCQs to OpenPDBs. As a side contribution, we observe
that the original dichotomy for PDBs is stronger: under reasonable assumptions, all safe queries can be computed
in linear time. We also show that nonmonotone queries are typically harder in OpenPDBs than those in PDBs. Our
analysis includes both data and combined complexity and provides a complete picture for the complexity landscape
of OpenPDBs in comparison with PDBs.

OpenPDBs already motivated several lines of work. One of the key challenges in OpenPDBs is to restrict the open
world to provide tighter probability bounds, as the default probability interval may not always be very informative.
One way of excluding spurious possible worlds, and limiting the probability mass of open atoms is by using an
additional knowledge representation layer towards more informative probability bounds [75]. An alternative way is to
define schema-level constraints on the probability space, ensuring more informative bounds [78]. Our study focuses
on finite domains, which may not be satisfactory in every application domain, which motivated an extension to infinite
universes [79].

The focus of our work is merely on exact inference (of the associated decision problems). It is well-known that
probabilistic query evaluation admits an FPRAS for UCQs, as it can be reduced to weighted model counting over
DNF structures. This results immediately translates to OpenPDBs, by the reductions presented in this paper. We think
that a dedicated study for approximate inference in OpenPDBs can be an interesting direction for future work.

Acknowledgments

This work is partially supported by the UK EPSRC grant EP/R013667/1, NSF grants #IIS-1943641, #IIS-1633857,
#CCF-1837129, DARPA XAI grant #N66001-17-2-4032, a UCLA Samueli Fellowship, and gifts from Intel and
Facebook Research.

Bibliography

[1] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao,
K. Mazaitis, T. Mohamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov,
M. Greaves, J. Welling, Never-Ending Learning, in: Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI-15), AAAI
Press, 2015, pp. 2302–2310.

[2] J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, C. Ré, Incremental knowledge base construction using deepdive, Proceedings of VLDB
Endowment 8 (11) (2015) 1310–1321. doi:10.14778/2809974.2809991.

[3] A. Fader, S. Soderland, O. Etzioni, Identifying relations for open information extraction, in: Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP-11), Association for Computational Linguistics, 2011, p. 15351545.

[4] J. Hoffart, F. M. Suchanek, K. Berberich, G. Weikum, Yago2: A spatially and temporally enhanced knowledge base from wikipedia, Artificial
Intelligence 194 (2013) 28–61. doi:10.1016/j.artint.2012.06.001.

[5] W. Wu, H. Li, H. Wang, K. Q. Zhu, Probase: A probabilistic taxonomy for text understanding, in: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, Association for Computing Machinery, 2012, pp. 481–492. doi:10.1145/2213836.
2213891.

[6] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun, W. Zhang, Knowledge vault: A web-scale approach
to probabilistic knowledge fusion, in: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Association for Computing Machinery, 2014, pp. 601–610. doi:10.1145/2623330.2623623.
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Appendix A. Proofs of Semantic Results

This part contains the initial results stated in Section 5, most of which are semantic results.

Proof of Lemma 5.2
It is sufficient to choose an ε value, which has strictly lower probability than any of the worlds induced by the

given PDB P. Let us denote by n be the number of atoms in the PDB P, and by m the maximal precision among
the fact probabilities in P. We set ε = 0.0 . . . 01, which has exactly n · m zero’s, and ensures that (i) ε has a lower
probability than any of the worlds induced by P, and (ii) the size of ε is polynomial in P. It is then easy to verify that
PP(Q) > p if and only if PP(Q) ≥ p + ε. Conversely, it is easy to verify that PP(Q) ≥ p if and only if PP(Q) > p − ε.
Analogous arguments hold also for < and ≤.

Proof of Corollary 5.3
Let Q be a safe UCQ for PDBs. Then, for any PDB P, the exact probability PP(Q) can be computed in polynomial

time. Hence, it is possible to decide whether PP(Q) > p for a given threshold p, in polynomial time. Thus, PQE(Q) is
in P for any safe UCQ Q.

Conversely, let Q be an unsafe UCQ for PDBs. Then, there exists a PDB P such that computing P(Q) is #P-hard
under polynomial-time Turing reductions. Let us loosely denote by P(Q) the problem of computing P(Q). We need to
show that PP is contained in PPQE(Q), i.e., any problem in PP can be reduced to PQE(Q) under polynomial time Turing
reductions.

To show this, let A be a problem in PP. Let us denote by #A, its computation problem. By assumption, #A, is
contained in FPP(Q), i.e., there is a polynomial-time Turing machine with oracle P(Q) that computes the output for #A.
We can adapt this Turing machine then to compare the output to some threshold, which means that A is contained in
PP(Q). We also know that P(Q) is contained in FPPQE(Q) as we can perform a binary search over the interval [0, 1] to
compute the precise probability P(Q). This implies that A is contained in PC where C = FPPQE(Q). Finally, note that the
intermediate oracle does not provide any additional computational power (as this computation can be performed by
the polynomial time Turing machine and the oracle PQE(Q) can be queried directly). This shows that A is in PPQE(Q),
which proves the result.
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Proof of Theorem 5.9

First, note that the functions PG : FO 7→ [0, λ] and P
G

: FO 7→ [0, λ] are well-defined w.r.t. the set KG, i.e.,
the existence of a maximum (resp., minimum) is ensured by the properties of credal sets. We need to show that the
maximal (resp., minimal) probabilities of queries can always be obtained from the extreme probability distributions.
We prove the claim only for P as P can be treated analogously.

To simplify the proof, we use the lineage representation of the database atoms, which can be realized simply by
introducing a propositional literal pt for every atom t. Similarly, we focus on the lineage of the query, which can
be obtained by first grounding the query and then converting it into a propositional formula by replacing every tuple
in the ground query with its lineage. It is well-known that every first-order query relative to a finite structure has
a corresponding propositional lineage representation and thus our assumption is without loss of generality. Since
any propositional formula is equivalent to a formula in 3CNF, we can further assume that the lineage is in 3CNF.
Moreover, for simplicity we assume that the CNF contains exactly three literals. Thus, it suffices to prove the claim
for 3CNF formulas φ = c1 ∧ . . . ∧ cn where ci = (¬)li1 ∨ (¬)li2 ∨ (¬)li3 .

Suppose that there is a probability distribution P, where the probabilities of k (positive) literals in φ are set to
intermediate probability values from the interval (0, λ). We prove that, for each such literal l, there is (at least) one
extreme assignment to l that does not decrease the probability of φ. Formally, given P, we define two new probability
distributions Pl=λ and Pl=0 such that Pl=λ(li j) = P(li j) and Pl=0(li j) = P(li j) for all li j different from l and Pl=λ(l) = λ,
and Pl=0(l) = 0.

Claim. Either Pl=λ(φ) ≥ P(φ), or Pl=0(φ) ≥ P(φ) holds.
To prove the claim, suppose that Pl=λ(φ) < P(φ), i.e., the probability of φ = c1 ∧ . . . ∧ cn decreases if we increase the
probability of l to λ. We make a case analysis.

Case 1. Assume that the literal l appears only positively in φ. This immediately leads to a contradiction since, if for
every clause ci, l appears positively, then the probability of φ is clearly monotone in l. Thus, Pl=λ(φ) ≥ P(φ).

Case 2. Assume that the literal l appears only negatively in φ. If for every clause ci, l appears negatively, then the
probability of φ is antitone in l. This immediately implies that Pl=0(φ) ≥ P(φ) since further decreasing the probability
of l increases the probability of φ.

Case 3. Assume that the literal l appears both positively and negatively in φ. We can summarize all clauses where l
appears positively with the formula

l ∨
( (

(¬)u1 ∨ (¬)u2
)
∧ . . . ∧

(
(¬)ur ∨ (¬)ur+1

)︸                                               ︷︷                                               ︸
∆1

)
,

and similarly the clauses where l appears negatively with the formula

¬l ∨
( (

(¬)v1 ∨ (¬)v2
)
∧ . . . ∧

(
(¬)vs ∨ (¬)vs+1

)︸                                               ︷︷                                               ︸
∆2

)
.

Moreover, let ∆3 be the conjunction of all clauses where the literal l does not appear. Thus, we obtain (l ∨ ∆1)∧ (¬l ∨
∆2) ∧ ∆3 as a rewriting of φ.

We can further simplify φ and deduce:

P(φ) = P(l) P(∆2 ∧ ∆3) + P(¬l) P(∆1 ∧ ∆3),

which is maximized by setting P(l) = λ, if P(∆2 ∧ ∆3) > P(∆1 ∧ ∆3), and by setting P(l) = 0, otherwise. This shows
that if Pl=λ(φ) < P(φ) then Pl=0(φ) ≥ P(φ). Therefore, this concludes our case analysis and proves the claim.

Observe that this argument can be applied repeatedly until there is no such literal left, i.e., all literals are assigned a
probability value that is extreme. Clearly, this procedure terminates, and implies that, for any probability distribution
that is maximal, but not extreme, we can find a corresponding extreme distribution that is also maximal.
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Proof of Theorem 5.10

We prove the result for the upper bound: PG(Q) = PPλ (Q). The proof for the lower bound P
G

(Q), can be obtained
analogously. It is easy to see that the function PG : UCQ 7→ [0, λ] is monotone for any choice of λ. By Definition 4.3,
we know that PPλ ∈ KG. Thus, we obtain PG(Q) ≥ PPλ (Q). To show the other direction, i.e., PG(Q) ≤ PPλ (Q), assume
by contradiction that PG(Q) > PPλ (Q). Then, by Theorem 5.9, there exists a PDB P̂ that uses only the extreme points
for the open tuples (i.e., induces an extreme distribution) and that satisfies PP̂(Q) = PG(Q) > PPλ (Q). Since Pλ and P̂
induce different distributions, there must exist at least one atom t for which PP̂(t) = 0 and PPλ (t) = λ. Then, by the
monotonicity of P on UCQs, it follows that PP̂(Q) ≤ PPλ (Q), which leads to a contradiction.

Proof of Lemma 5.11

This is a simple consequence of the query semantics: either D |= Q or D |= ¬Q holds for any database D and
query Q. On this level, the semantics forces completeness, and therefore, it is never the case that neither D |= Q nor
D |= ¬Q holds. By this argument, for any probability distribution P, it holds that P(Q) = 1 − P(¬Q). Using this and
the existence of maximal and minimal distributions in OpenPDBs, it is easy to deduce:

1 − PG(Q) = 1 −max{P(Q) | P ∈ KG} = min{1 − P(Q) | P ∈ KG} = min{P(¬Q) | P ∈ KG} = P
G

(¬Q),

and the other case can be shown analogously.

Appendix B. Proofs of Data Complexity Results

This part contains all the proofs of the data complexity results stated in Section 6.

Proof of Theorem 6.2

Consider an OpenPDB G = (P, λ) over a sorted domain, and a UCQ. Let us denoted by Gr = (Pr, λ) the prepro-
cessed OpenPDB, which is ranked. Note that in general Pr can be polynomially larger than P.

First, we show that the number of calls in the recursion tree of Algorithm 1 is linear in the size of Pr (i.e., the
number of atoms in the preprocessed PDB). We can ignore calls below each invocation of Line 23, as these calls no
longer depend on Pr. For the remaining calls to LiftRO, we show a constant upper bound on how many calls are added
when a single atom t is added to P. We say that a LiftRO-call covers an atom if that atom appears in its P-argument.
In Step 5, the separator variable must appear in every atom, which means that the separator variable must appear in
t as well. Hence, of the child calls generated in Line 22, at most one can cover t. The number of calls that cover
t is therefore bounded above by the number of recursive calls that can be generated in Steps 2–4. These steps are
independent of Pr, and only a function of the query. Therefore, the number of calls covering t is at most a constant
in the size of Pr. Every call to LiftRO must cover at least one atom (ignoring the constant cost of Line 23 and its calls
with empty databases), which bounds the number of calls to be linear in Pr.

Second, we show that the computations inside each individual call to LiftRO admit an overall linear complexity.
When adding an atom t to Pr, the calls that cover t are of two types: (1) calls that do not cover another atom in Pr

except for t, and (2) calls that already cover another atom in Pr.

(1) Because of database restriction operators such as Pr
|x=c throughout Algorithm 1, the calls of type 1 all have the

minimum required database as an argument, that is, |Pr | = 1. Thus we have a constant data complexity for
non-recursive computations in calls of type 1.

(2) To analyze the complexity of type-2 calls, we make the standard assumption that the domain has a given one-to-
one correspondence with the integers. This allows for the operation Pr

|x=c to be implemented in linear time for
all c simultaneously (i.e., Step 5 has linear data complexity sans the recursive calls). The complexity of type-2
calls thus grows linearly with Pr.
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In total, adding an atom to Pr will add a constant number of type-1 calls, whose internal computations all have
constant data complexity. It will also increase the runtime of a constant number of type-2 calls by a constant. This
gives an overall linear data complexity.

Hence, the algorithm LiftRO runs in time polynomial in data complexity (accounting also for preprocessing). The
probability of any safe query can be evaluated in linear time in the size of the ranked OpenPDB Gr in data complexity.
Moreover, any safe query which is self-join-free can be evaluated in linear time in the size of the input OpenPDB G,
since ranking is not needed for self-join free queries.

Proof of Theorem 6.4
For the membership results, it is sufficient to show that PQE(FO) is in PP in data complexity. Let P be a PDB, Q

a FO query and p ∈ (0, 1] a rational value. Let us denote by P the probability distribution induced by P. We need to
show that P(Q) > p can be decided in PP. Note that there are exponentially many databases (worlds) D induced by
P, each of which holds with some probability. We now create multiple copies of each world in such a way that the
uniform distribution over all thus generated worlds is equivalent to P when each copy is taken to represent its original
world. Given this uniform distribution over the worlds, we now consider a nondeterministic Turing machine, where
each branch corresponds to one of these worlds. Each branch of the nondeterministic Turing machine represents an
accepting run if the test D |= Q is positive for the corresponding world D (which can be verified in polynomial time
in data complexity). Moreover, for threshold values properly above (respectively, below) 0.5, we introduce artificial
success (respectively, failure) branches into the nondeterministic Turing machine such that satisfying the original
threshold corresponds to having a majority of successful computations. Then, P(Q) > p (i.e., the answer to the
probabilistic query entailment problem is yes) if and only if the nondeterministic Turing machine answers yes in the
majority of its runs, which proves membership.

As for the hardness results, we first prove that PQE(∀FO) is PP-hard in data complexity. Let P be a PDB, Q a ∀FO
query and p ∈ (0, 1] a threshold value. We reduce from the following problem. Given a quantified Boolean formula
Φ B Cc x1, . . . , xn φ, where C represents the counting quantifier and φ = φ1 ∧ · · · ∧ φk is a propositional formula in
3CNF, defined over the variables x1, . . . , xn, decide whether Φ is valid. Intuitively, this amounts to checking whether
there are c assignments for x1, . . . , xn that satisfy φ, and deciding the validity of such formulas is PP-complete [33].
For the reduction, we consider the following ∀FO query:

QSAT := ∀x, y, z ( L(x) ∨ L(y) ∨ L(z) ∨ R1(x, y, z)) ∧
(¬L(x) ∨ L(y) ∨ L(z) ∨ R2(x, y, z)) ∧
(¬L(x) ∨ ¬L(y) ∨ L(z) ∨ R3(x, y, z)) ∧
(¬L(x) ∨ ¬L(y) ∨ ¬L(z) ∨ R4(x, y, z)) ,

which is used to encode the satisfaction conditions of the formula Φ. Furthermore, we define the PDB PΦ that stores
the structure of Φ as follows.

– For each variable xi, 1 ≤ i ≤ n, PΦ contains the atoms 〈L(xi) : 0.5〉, where we view each xi as a database
constant.

– The clauses φi are described with the help of the predicates R1, . . . , R4, each of which corresponds to one
type of clause. More specifically, there are at most four different types of clauses in a 3CNF formula (modulo
permutations): (i) R1 encodes clauses with exactly three positive literals, (ii) R2 encodes clauses with exactly
two positive literals and a single negated literal, (iii) R3 encodes clauses with exactly two negated literals and
a single positive literal, (iv) R4 encodes clauses with exactly three negated literals. For example, for the clause
φi = x1 ∨ ¬x2 ∨ ¬x4, we add the atom 〈R3(x4, x2, x1) : 0〉 to PΦ, which enforces via QSAT that either ¬L(x4),
¬L(x2) or L(x1) holds. All other R-atoms that do not correspond in such a way to one of the clauses, we add
with probability 1 to PΦ.

Claim. The formula Φ is valid if and only if PPΦ
(QSAT) ≥ c · (0.5)n.

Suppose that Φ is valid. Then, there are at least c different assignments τ to the variables x1, . . . , xn that satisfy
φ. For each satisfying assignment τ, there is a corresponding database D induced by PΦ such that (i) D contains an
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atom L(xi) if and only if τ sets xi to true in Φ, and (ii)D contains all R-atoms that occur in PΦ with probability 1. For
each such database D, it holds that D |= QSAT, as each such world is in one-to-one correspondence with a satisfying
valuation. Note that there are only n probabilistic atoms in PΦ, i.e., the atoms L(x j), 1 ≤ i ≤ n (corresponding to
the variables in Φ). Thus, every database D induced by PΦ has the probability 0.5n. By our assumption, there are c
satisfying assignments τ to Φ, and hence, it follows that PPΦ

(QSAT) ≥ c · (0.5)n.
For the other direction, let PPΦ

(QSAT) ≥ c · (0.5)n. Then, each database D induced by PΦ sets a choice for
the nondeterministic atoms L(x1), . . . , L(xn) and each such database has the probability (0.5)n (as there are only n
nondeterministic atoms in the PDB). As a consequence, there must exist at least c databases induced by PΦ that
satisfies D |= Q. For each such database D, we define a corresponding assignment τ to the variables x1, . . . , xn such
that xi is mapped to true in τ if and only if L(xi) ∈ D. It is then easy to verify that τ |= φ. As there are c different
assignments τ that satisfy φ, we conclude that the formula Φ is valid. This proves PP-hardness for PQE(∀FO).

Observe that this hardness immediately applies to PQE(FO), as QSAT ∈ FO. Finally, note that the negation of
QSAT is an ∃FO query and PP is closed under complement as it is closed under truth table reductions [30]. Hence, this
hardness also holds for PQE(∃FO).

Proof of Theorem 6.5
We start by proving the membership results. It is sufficient to show that PQE(FOs) is in NP and PQE(FOs) is in

coNP, since the membership results for the query classes ∃FOs and ∀FOs follow from these. Let G = (P, λ) be an
OpenPDB, Q be a FOs query, and p ∈ (0, 1] a rational value. We first show that deciding whether PG(Q) > p is in
NP. To see why this holds, consider a nondeterministic Turing machine, where each computation branch corresponds
to an extreme completion of G. Each of these computation branches, corresponding to a completion P̂, can then be
used to verify whether PP̂(Q) > p. Note that this verification can be performed in polynomial time in data complexity,
since any completion is a PDB, and the query Q ∈ FOs is safe for PDBs, by our assumption. Then, PG(Q) > p
if and only if the described nondeterministic Turing machine answers yes. Hence, PQE(FOs) is in NP. To show
that deciding whether P

G
(Q) > p is in coNP, we can prove that the complementary problem of deciding whether

P
G

(Q) ≤ p is in NP. To see why this holds, consider the same construction for a nondeterministic Turing machine as
before, except that each computation branch now verifies whether PP̂(Q) ≤ p (which can be done in polynomial time
in data complexity), for the respective completion P̂ that it represents. Then, P

G
(Q) ≤ p if and only if the described

nondeterministic Turing machine answers yes. Hence, PQE(FOs) is in coNP.
For the hardness results, we prove PQE(∀FOs) is NP-hard, which, by duality, implies PQE(∃FOs) is coNP-hard.

Clearly, these lower bounds apply to FOs queries, and we obtain the all the claimed results. To prove this result, we
carefully choose a query which is safe for PDBs, but becomes hard for OpenPDBs. More concretely, we carefully
define a ∀FOs query QSAFE and prove the following propositions:

Proposition B.1. PQE(QSAFE) is in P for PDBs (i.e., QSAFE is safe for PDBs).

Proposition B.2. PQE(QSAFE) is NP-hard for OpenPDBs.

Then, by Proposition B.1, it holds that QSAFE ∈ ∀FOs, and together with Proposition B.2, we conclude that PQE
(∀FOs) is NP-hard for OpenPDB. The proof is thus structured as follows: (i) Identifying a query QSAFE, (ii) Proof of
Proposition B.1, and (iii) Proof of Proposition B.2.

Identifying the query QSAFE

The construction of QSAFE is quite intricate. We start by describing this query, which, once identified, is fixed.
The idea is to start from a ∀FO query:

QSAT := ∀x, y, z ( L(x) ∨ L(y) ∨ L(z) ∨ R1(x, y, z)) ∧
(¬L(x) ∨ L(y) ∨ L(z) ∨ R2(x, y, z)) ∧
(¬L(x) ∨ ¬L(y) ∨ L(z) ∨ R3(x, y, z)) ∧
(¬L(x) ∨ ¬L(y) ∨ ¬L(z) ∨ R4(x, y, z)) ,

which is shown to be unsafe for PDBs in the proof of Theorem 6.4. Observe also that the construction given in the
proof of Theorem 6.4 shows that QSAT can encode an arbitrary propositional formula in 3CNF.
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We apply a chain of transformations on QSAT in order to obtain QSAFE. First, we transform the query QSAT into a
query QEQ that consists of individually safe clauses, while QEQ itself remains unsafe. Our transformation ensures that
the queries QSAT and QEQ are equisatisfiable, and even more is actually true: there is a one-to-one mapping between
the models of these queries. We then apply another transformation on the query to produce QSAFE from QEQ. Recall
that QEQ is an unsafe query, but each of its clauses are safe. QEQ is hard since the terms produced in the inclusion-
exclusion step are hard to evaluate. Put in more intuitive terms, clauses in QEQ are probabilistically dependent of each
other, and this serves as the source for hardness. We manipulate these clauses so that they become mutually exclusive,
which in turn helps us to come up with the QSAFE, that is safe for PDBs. QSAFE is defined in such a way that all the
unsafe terms will cancel out during the exhaustive application of the inclusion-exclusion rule. This is the intuitive
reason why QSAFE is safe for PDBs, while it is hard for OpenPDBs. We now provide the details of the corresponding
transformations.

Transforming QSAT to QEQ. We show how to transform QSAT into an equisatisfiable query QEQ, using a special type
of Tseitin transformation [91]. The idea is to detect the unsafe fragments in each clause of QSAT and replace them
recursively with fresh atoms until the clause is safe. While doing so, we also add additional clauses to the formula,
which assert the equivalence of the freshly introduced atom to the old formula, ensuring the overall equisatisfiability
of QSAT and QEQ.

We omit the full details of this transformation (as it is well-known), but explain it on a small example. Consider,
for instance a clause ∀x, y L(x) ∨ L(y) ∨ R1(x, y), which is not safe as there is no separator variable. To transform this
query, we define a fresh atom Z(x, y) to be equivalent to the formula L(y) ∨ R1(x, y), which results in the following
query:

∀x, y
(
L(x) ∨ Z(x, y)

)
∧

(
Z(x, y)↔ (L(y) ∨ R1(x, y))

)
.

Notice that the first conjunct is already safe. The second conjunct can further be simplified as:

∀x, y
(

Z(x, y)→ (L(y) ∨ R1(x, y))
)
∧

(
( L(y) ∨ R1(x, y))→ Z(x, y)

)
≡

∀x, y
(
¬Z(x, y) ∨ L(y) ∨ R1(x, y)

)
∧

(
(¬L(y) ∧ ¬R1(x, y)) ∨ Z(x, y)

)
.

Note that the first clause is also safe as there y is a separator variable (and afterwards x serves as a separator
variable). However, the last clause is not in disjunctive form but can be decomposed into two disjunctive clauses:(

¬L(y) ∨ Z(x, y)
)
∧

(
Z(x, y) ∨ ¬R1(x, y)

)
,

both of which are safe. Clearly, we can apply this transformation to any universally quantified formula, and it will
eventually result in a (potentially) large conjunction of clauses, each of which is individually safe. As a consequence,
we obtain a query QEQ =

∧
qi(x, y, z), where each qi(x, y, z) is a safe clause over the variables x, y and z. By

construction, it is easy to see that any model of QSAT can be extended to a model of QEQ, by interpreting the freshly
introduced atoms to be equivalent to the sub-formula they replaced.

Transforming QEQ to QSAFE. Every clause qi(x, y, z) in the query QEQ =
∧

1≤i≤n qi(x, y, z) is safe, while the query
itself is still not safe, and the reason is hidden in the inclusion-exclusion terms that are hard to evaluate. We define the
following formula:

QSAFE = ∀x, y, z
∧

1≤i≤n

(
qi ∨ ¬Hi

)
∧

∧
1≤i< j≤n

(
¬Hi ∨ ¬H j

)
∧

( ∨
1≤i≤n

Hi
)
,

where Hi is a zero-arity predicate. Let us give some insight on this formula. Note that the second part of the formula
consists of only Hi-atoms. The last clause simply says that at least one of the atoms Hi must be true. Together with
the other clauses, the second part of the formula asserts that exactly one atom Hk, for some 1 ≤ k ≤ n can be true, and
all the remaining atoms Hi, 1 ≤ i , k ≤ n must be false. This has direct implications on the first part of the formula
where the clauses qi from the original formula QEQ appear. Briefly stated, if we choose to satisfy the k-th atom, Hk,
then this means all clauses qi ∨ ¬Hi will be trivially satisfied for i , k. Intuitively, this means that their influence on
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the query probability will be fixed, and only qk ∨ ¬Hk will be counted. It is important to note that QSAFE and QEQ are
not equisatisfiable.

We have now identified the query QSAFE, and based on this query, we prove the propositions.

Proposition B.1. PQE(QSAFE) is in P for PDBs (i.e., QSAFE is safe for PDBs).

Proof. Observe that the clauses in QSAFE of the form ¬Hi ∨ qi consist of multiple atoms that are not connected
by a relational variable. That is, every clause consists of independent literals. Therefore, the entire query can be
written as (¬Hi ∧ ∆) ∨ (qi ∧ ∆), which is a UCNF. Applying this transformation to all clauses (all such clauses have
disconnected Hi-atoms), we obtain a large union, on which we can perform inclusion-exclusion in Step 3. The detailed
implementation of inclusion-exclusion for PDBs (cf. [52]) removes a large number of unsatisfiable CNF clauses from
this union. Afterwards, all remaining CNF formulas in the union have the form:

βk = ¬H1 ∧ · · · ∧ Hk ∧ qk ∧ . . .¬Hn,

that is, one Hi-atom for every i, and containing exactly one positive atom Hk with a corresponding clause qk(x, y, z).
The entire UCNF is then given by

∨n
i=1 βi. Importantly, the individual formulas βi are mutually exclusive, removing the

need for any nonsingular combination of βi-terms in the inclusion-exclusion formula. Thus, the inclusion-exclusion
rule computes:

PP(QSAFE) =

m∑
i=1

PP(βi),

for some arbitrary PDB P. Then, since qi and H-atoms do not share any relation name, we can further decompose the
query as:

PP(βi) = PP(qi) · PP(¬H1 ∧ · · · ∧ Hi ∧ . . .¬Hn),

where the first term of the multiplication is safe by construction and it is easy to see that the second term is also safe.
Thus, we obtain:

PP(QSAFE) =

m∑
i=1

PP(qi) · PP(¬H1 ∧ · · · ∧ Hi ∧ . . .¬Hn),

which allows us to conclude that QSAFE is safe for PDBs.

Proposition B.2. PQE(QSAFE) is NP-hard for OpenPDBs.

Proof. We give a reduction from the satisfiability problem defined over 3CNF formulas: given a propositional for-
mula φ in a 3CNF, decide whether it is satisfiable. For our construction, we define an OpenPDB Gφ = (Pφ, 1) over
a vocabulary σ that contains the relation symbols from QSAFE (thus also from QEQ) as well as some additional con-
stants (while assuming at least 3 of them). Intuitively, the fixed query QSAFE encodes (in a loose sense) the satisfaction
conditions of the given 3CNF formula φ. The PDB Pφ stores the structure of φ as follows:

– Pφ contains all atoms 〈Hi : 0.5〉 for 1 ≤ i ≤ n.

– The clauses φi are described with the help of the predicates R1, . . . , R4, each of which corresponds to one type
of clause, as described in the proof of Theorem 6.4. All other R-atoms that do not correspond in such a way to
one of the clauses, we add with probability 1 to Pφ.

– All the remaining atoms (that are directly related to the satisfaction of QEQ) are left open. In other words, there
are only n probabilistic atoms.
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Claim. The formula φ in 3CNF is satisfiable if and only if PGφ (QSAFE) ≥ n · (0.5)n.

Let us assume that PGφ (QSAFE) ≥ n · (0.5)n. This implies that there exists a completion that sets a choice for the open
atoms such that the probability of QSAFE relative to this completion is at least n · (0.5)n. By the structure of QSAFE, we
already know that there are n different configurations of the Hi-atoms, each with probability (0.5)n. This means that all
qi(x, y, z), 1 ≤ i ≤ n must be satisfied by a distinct database with probability (0.5)n. Note, however, all these databases
differ only with respect to the Hi-atoms. Apart from H-atoms, all the atoms are deterministic in the completion; that
is, they either are in the completion with probability 1, or are excluded. This implies that there exists a database D
that satisfies all qi(x, y, z), 1 ≤ i ≤ n. We now define a propositional assignment τ such that it maps a variable u in φ
to true if and only if L(u) ∈ D. It is then easy to show that τ |= φ.

Conversely, let us assume that φ is satisfiable and let τ be a satisfying assignment of φ. We define the completion
Pτ as follows. First note that the completion Pτ ⊇ PΦ, i.e., all atoms 〈Hi : 0.5〉 for 1 ≤ i ≤ n are in the completion,
and so are the Ri atoms from PΦ. Moreover, we add 〈L(u) : 1〉 if τ maps u to true; otherwise, we add 〈L(u) : 0〉 to
the completion Pτ. Notice that all Z-atoms are introduced to be equivalent to some L-atom (in the construction of
the query). To preserve this, we also add the respective Z-atoms, either with probability 0, or 1, depending on the
L-atoms.

As before, there are n configurations of Hi-atoms, each with 0.5n probability. For each such configuration exactly
one qi must be satisfied, which holds since each databaseD induced by Pτ differs only on the H-atoms and it is easy to
verify that each of them satisfiesD |= qi for all 1 ≤ i ≤ n. Thus, we obtain that PGφ (QSAFE) ≥ PPτ (QSAFE) = n · (0.5)n,
which concludes the proof of Proposition B.2.

We have thus proven all membership and hardness results stated in Theorem 6.5.

Proof of Theorem 6.6

We start by proving the membership results. As before, it is sufficient to show that PQE(FO) is in NPPP and
PQE(FO) is in coNPPP, and these cover all membership results for all query classes under consideration. Let G =

(P, λ) be an OpenPDB, Q be a FO query, and p ∈ (0, 1] a rational value. To show that deciding whether PG(Q) > p is in
NPPP, consider a nondeterministic Turing machine with a PP oracle such that each computation branch corresponds to
one of the extreme completions P̂ of G (as in the proof of Theorem 6.5), and, for each such branch, the corresponding
verification PP̂(Q) > p is done by the PP oracle. Note that the verification PP̂(Q) > p can be performed in PP in data
complexity, since the completion PP̂ is a PDB, and PQE(FO) is in PP for PDBs. Then, PG(Q) > p if and only if the
described nondeterministic Turing machine answers yes. Hence, PQE(FO) is in NPPP. To show that deciding whether
P
G

(Q) > p is in coNPPP, we prove that the complementary problem of deciding whether P
G

(Q) ≤ p is in NPPP.
Consider the same construction for the nondeterministic Turing machine as before, except that each computation
branch uses the oracle, for verifying PP̂(Q) ≤ p. This verification is in PP, since it is the complement of deciding
PP̂(Q) > p, which is PP-complete, and PP is closed under complement. Then, P

G
(Q) ≤ p if and only if the described

nondeterministic Turing machine answers yes.
For the hardness results, we prove (i) PQE(∀FO) is NPPP-hard for OpenPDBs, and (ii) PQE(∀FO) is coNPPP-hard

for OpenPDBs. By duality, (i) and (ii) imply the results for PQE(∃FO), and PQE(∃FO). Clearly, all these lower
bounds apply to FO queries, and we obtain all the claimed results.

Proposition B.3. PQE(∀FO) is NPPP-hard for OpenPDBs.

Proof. We reduce from the following problem. Let Φ = ∃x1, . . . , x` Cc y1, . . . , ym φ, denote a quantified Boolean
formula, where C represents the counting quantifier and φ = φ1 ∧ · · · ∧φk is a propositional formula in 3CNF, defined
over the variables x1, . . . , x`, y1, . . . , ym. Deciding the validity of such formulas is NPPP-complete [33]. Intuitively, this
amounts to checking whether there is a partial assignment for x1, . . . , x` that admits at least c extensions to y1, . . . , ym

that satisfy φ.
To reduce the problem to upper probabilistic query evaluation, we consider again the universally quantified

query QSAT given in the proof of Theorem 6.5. As before, QSAT is used to encode the satisfaction conditions of
the formula Φ together with the PDB PΦ that stores the structure of Φ. The PDB PΦ is given as follows: for each
variable y j, 1 ≤ j ≤ m, PΦ contains the atoms 〈L(y j) : 0.5〉, where we view each y j as a constant. As in the proof of
Theorem 6.5, the clauses φi are described with the help of the predicates R1, . . . , R4. All other R-atoms that do not
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correspond in such a way to one of the clauses, we add with probability 1 to PΦ. Notice that the atoms 〈L(xi) : 0.5〉,
1 ≤ i ≤ l that correspond to the x-variables in Φ are left open. Finally, we define the OpenPDB GΦ = (PΦ, 1). The
construction provided for QSAT and GΦ is clearly polynomial. Furthermore, the query is fixed, and only PΦ depends
on Φ. We now prove the following claim.

Claim. The formula Φ is valid if and only if PGΦ
(QSAT) ≥ c · (0.5)m.

Suppose that Φ is valid. Then, for some assignment µ of the variables x1, . . . , x`, there are at least c different
assignments τ extending µ to the variables y1, . . . , ym that satisfy Φ. We use the assignment µ in order to set a choice
for all open atoms L(xi), 1 ≤ i ≤ `. More precisely, we define the λ-completion Pµ that contains 〈L(xi) : 1〉 if µ sets xi

to true and contains 〈L(xi) : 0〉, otherwise. Intuitively, every assignment of the existentially quantified variables in Φ

corresponds to a different completion and the assignment µ is realized by the completion Pµ.
Moreover, observe that for each satisfying assignment τ extending µ to the variables y1, . . . , ym, there exists a

database D induced by Pµ. We can define such a database D as follows: add all atoms to D that are in Pµ with
probability 1 and add every atom L(y j) to D if and only if τ sets yi to true. It is easy to see that each such database
satisfiesD |= QSAT. Finally, it suffices to observe that there are only m nondeterministic atoms inPµ; namely the atoms
L(y j), 1 ≤ j ≤ m that correspond to the y-variables in Φ. Thus, every database D induced by Pµ has the probability
0.5m. By our assumption, there are c satisfying assignments τ extending µ; thus, it follows that PPµ (QSAT) = c · (0.5)m,
which implies PGΦ

(QSAT) ≥ c · (0.5)m as a consequence of the query semantics in OpenPDBs.
For the other direction, let PGΦ

(QSAT) ≥ c · (0.5)m. Then, there exists a λ-completion Pµ such that PPµ (QSAT) ≥
c · (0.5)m. Moreover, each database D induced by Pµ sets a choice for the nondeterministic atoms L(y1), . . . , L(ym)
and each such database has the probability (0.5)m (as there are only m nondeterministic atoms in the PDB). As a
consequence, there must exist at least c databases induced by Pµ that satisfiesD |= Q.

We define an assignment µ to the variables x1, . . . , x` such that xi is mapped to true in µ if and only if 〈L(xi) : 1〉 ∈
Pµ. Then, for each database D induced by Pµ and that satisfies D |= QSAT, we define an assignment τ that sets y j

to true if and only if L(y j) ∈ D. It is then easy to verify that τ |= Φ and that τ properly extends µ to a complete
assignment. As there are c different assignments τ that extend µ while satisfying φ, we conclude that the formula Φ is
valid.

Proposition B.4. PQE(∀FO) is coNPPP-hard for OpenPDBs.

Proof. This proof follows similar ideas to the proof of Proposition B.3. We reduce from the problem of deciding
validity of formulas of the following form Φ = ∀x1, . . . , x` Cc y1, . . . , ym φ, which is similar to the earlier problem,
except that the x-variables are now universally quantified. We use the exact same construction for G = (PΦ, 1) and
QSAT as before with the only difference being that the x-variables are now universally quantified.

Claim. The formula Φ is valid if and only if P
GΦ

(QSAT) ≥ c · (0.5)m.
Suppose that Φ is valid. Consider any completion Pλ that sets a choice for the open atoms L(x1), . . . , L(x`). We

define an instantiation µ such that µ maps xi to true if and only if 〈L(xi) : 1〉 is in the PDB Pλ. Since Φ is valid,
we know that for any instantiation of the variables x1, . . . , x`, there exists at least c assignments τ that extends this
instantiation to the variables y1, . . . , ym satisfying φ. Thus, there must exists at least c assignments τ extending µ such
that τ |= φ.

It is easy to see that each such assignment τ defines a database Dτ induced by the PDB Pλ and that Dτ |= QSAT.
As before, every Dτ has the probability 0.5m since there are m nondeterministic atoms. This proves that, for any
completion, the probability of the given query cannot be less than c · (0.5)m, which yields P

GΦ
(QSAT) ≥ c · (0.5)m.

For the other direction, we know that regardless of the completionPλ that is chosen, it holds that Pλ(QSAT) ≥ c · (0.5)m.
Moreover, every completion corresponds to a valuation µ of the x-variables in Φ and for each such assignment can be
extended to c satisfying assignments, as before.

Observe that every world induced by a completion Pλ has the probability 0.5m. To satisfy PGλ (QSAT) ≥ c · (0.5)m,
there have to be c databases induced by Pλ satisfying QSAT. We have shown that each such database Dτ corresponds
to a satisfying assignment τ that extends µ such that τ |= φ. Hence, there must be at least c such assignments. Finally,
since we proved this for an arbitrary completion (hence, for an arbitrary valuation of the x-variables), we conclude
that the Φ is valid.
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We have thus proven all membership and hardness results stated in Theorem 6.6.

Appendix C. Proofs of Combined Complexity Results

This part contains all the proofs of the combined complexity results stated in Section 7.

Proof of Theorem 7.1
We first show that PQE(∃FO) is in PPNP in combined complexity. Let P be a PDB, Q a ∃FO query and p ∈ (0, 1]

a threshold value. To decide whether P(Q) > p, consider a nondeterministic Turing machine as described in the proof
of Theorem 6.4, but one, which additionally has access to an NP oracle. The only difference is that the verification
step D |= Q, for each world D induced by the PDB P, is NP-complete in combined complexity. The answer to this
test can be retrieved from the oracle machine. Then, P(Q) > p (i.e., the answer to the probabilistic query entailment
problem is yes) if and only if the nondeterministic Turing machine answers yes in the majority of its runs. This proves
that PQE(∃FO) (and hence PQE(UCQ)) is in PPNP in combined complexity. Finally, observe that PQE(∀FO) is also in
PPNP, since query evaluation for ∀FO queries is coNP-complete, i.e., the same oracle can be called for the verification
stepD |= Q for universal queries.

In order to show hardness, we reduce from the following problem: decide validity of formulas of the form
Φ = Cc x1, . . . , xm∃y1, . . . , yn φ1 ∧ φ2 ∧ · · · ∧ φk, where every φi is a propositional clause over x1, . . . , xm, y1, . . . , yn,
and k,m, n≥ 1. Φ is valid if and only if, for at least c of the partial assignments µ to x1, . . . , xm, the formula
∃y1, . . . , yn µ(φ1 ∧ φ2 ∧ · · · ∧ φk) is true. This is a PPNP-complete problem [33]. To simplify the proof, we also as-
sume, without loss of generality, that φ contains all clauses of the form x j ∨ ¬x j, 1 ≤ j ≤ m, and similarly y j ∨ ¬y j,
1 ≤ j ≤ n; clearly, this does not affect the existence or number of satisfying assignments for φ. We also assume that
each clause φ j contains exactly three literals. This is also without loss of generality, since otherwise we can introduce
additional existentially quantified variables to abbreviate the clauses, or duplicate literals if the clauses are too short.

We can now describe the construction for a PDB and a query. We define the PDB PΦ for the reduction as follows:

– For each variable x j, 1 ≤ j ≤ m, PΦ contains the atoms 〈L(x j, 0) : 0.5〉 and 〈L(x j, 1) : 0.5〉.

– Each clause φ j is described with the help of a predicate M(·, ·, ·, j) of arity 4, which encodes the satisfying
assignments for φ j. For example, consider the clause φ j = x2 ∨ ¬y4 ∨ y1. For the satisfying assignment x2 7→

true, y4 7→ true, y1 7→ false, we add the atom M(1, 1, 0, j) with probability 1, and similarly for all other satisfying
assignments. There are at most 7 satisfying assignments for each clause.

Furthermore, we define the UCQ:

QΦ = (∃y1, . . . , yn ψ1 ∧ · · · ∧ ψk) ∨ (∃x L(x, 0) ∧ L(x, 1)),

where each ψ j is a conjunction that is derived from φ j depending on the types of the involved variables. We describe
the details again on the example clause φ j = x2∨¬y4∨y1. The satisfaction of this clause is encoded by the conjunction

ψ j = M(i, y4, y1, j) ∧ L(x2, i),

where i is an additional existentially quantified variable that is local to ψ j, and j is fixed. Intuitively, ψ j asserts that the
truth assignment for x2, y4, and y1 (given by x2, i, and y1, respectively) satisfies φ j. Note that the variables y1, . . . , yn

have to be mapped to 0 or 1, since otherwise they cannot satisfy the M-atoms. Moreover, observe that an alternative
way of satisfying QΦ is due to the last clause in QΦ: it applies when L-atoms represent an inconsistent assignment (in
Φ) for at least one variable of the form x j. Note that, in this case, the query can be satisfied without actually sat-
isfying the original formula Φ. This happens only if the the world contains both L(x j, 0), L(x j, 1). As there are 2m
nondeterministic atoms in PΦ, there are 4m worlds; among them, (4m − 3m) satisfy the last clause of the query QΦ,
which corresponds to an inconsistent valuation in Φ. Note that there are other inconsistent assignments, namely, those
that exclude both L(x j, 0) and L(x j, 1), but these cannot satisfy the query. Based on the given construction, and these
observations, we now prove the following claim.

Claim. Φ is valid if and only if PPΦ
(QΦ) ≥ 0.52m(4m − 3m + c).
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Suppose that Φ is valid. Then, there are at least c assignments µ for x1, . . . , xm such that each of these assignments
admit an extension τ to the variables y1, . . . , yn such that τ |= φ. For each partial valuation µ, we define a databaseDµ

such that it contains all atoms from PΦ that occur with probability 1. Moreover, Dµ contains an atom L(x j, 1) if x j is
mapped to true in µ, and an atom L(x j, 0) if x j is mapped to false in µ. It is easy to see that each such database Dµ is
induced by the PDB PΦ. Besides, since each of these assignments µ admit an extension τ to the variables y1, . . . , yn

such that τ |= φ, it follows that Dµ |= (∃y1, . . . , yn ψ1 ∧ · · · ∧ ψk), as all satisfying assignments are already encoded
in the database. In particular, this implies that Dµ |= QΦ for c worlds. Recall also that (4m − 3m) worlds satisfy the
last clause in the query (which captures the inconsistent valuations). As every world has the probability (0.5)2m, we
conclude that PPΦ

(QΦ) ≥ 0.52m(4m − 3m + c).
Conversely, if PPΦ

(QΦ) ≥ 0.52m(4m − 3m + c), then there are at least c worlds that satisfy the first clause in QΦ. For
each of those worldsD, we define a partial assignment µD such that a variable x j is mapped to true if L(x j, 1) ∈ D and
it is mapped to false if L(x j, 0). Moreover, D |= (∃y1, . . . , yn ψ1 ∧ · · · ∧ ψk) implies that there is a satisfying mapping
for the y-variables in the database. Recall that, this can only be the case if a variable y j is either mapped to 0 or to 1
due to the structure encoded in M-atoms. We define an extension τD of µD, which maps a variable y j to true if and
only if it is mapped to 1 in the database and to false, otherwise. It is easy to verify that τD |= φ. Thus, for c partial
assignments, the formula ∃y1, . . . , yn φ1 ∧ · · · ∧ φk is satisfiable; meaning that, the formula Φ must be valid.

Proof of Theorem 7.2
We first show that PQE(FO) is in PSpace in combined complexity. Let P be a PDB, Q a FO query and p ∈ (0, 1]

a threshold value. To decide whether PP(Q) > p, consider a polynomial-space bounded nondeterministic Turing
machine that enumerates all (exponentially many) worlds D, while keeping one world in memory at a time, and
performs the test D |= Q for those worlds; then, adds up their probabilities if the test is successful. Note that the
test D |= Q can be performed in polynomial, since the query evaluation problem for FO queries is PSpace-complete.
Finally, the machine answers yes if and only if PP(Q) > p, which proves membership.

Hardness is an immediate consequence of the fact that probabilistic query evaluation is a generalization of query
evaluation, and query evaluation for FO queries is PSpace-hard in combined complexity (even if we assume that the
arity of the predicates are bounded). Specifically, consider an arbitrary database D and a FO query Q. To decide
whether D |= Q, we define a PDB P, which contains all the atoms from D with probability 1. Then, D |= Q if and
only if PP(Q) ≥ 1.

Proof of Theorem 7.3
For the membership results, it is sufficient to show that PQE(UCQ) is in PPNP (since PQE(UCQ) coincides with

PQE(UCQ)). Let G = (P, λ) be an OpenPDB, Q be a UCQ, and p ∈ (0, 1] a rational value. To decide whether
PG(Q) > p, we consider the completionPλ ofP, which sets the probability of all open atoms to λ. By Theorem 5.9 and
by the monotonicity of UCQs, this completion maximizes the query probability, and since the arity of the predicates
is bounded, the size of this completion is also bounded by a polynomial. Thus, for a UCQ Q, we have reduced
PG(Q) > p to PPλ (Q) > p, which is in PPNP by Theorem 7.1. Hardness also follows from Theorem 7.1, which asserts
that PQE(UCQ) is PPNP-hard for PDBs.

Proof of Theorem 7.4
We prove the results for PQE(∃FO), and PQE(∃FO) in bounded-arity combined complexity, and by the duality

property, the results for universal queries are implied. Let G = (P, λ) be an OpenPDB, Q a ∃FO query and p ∈ [0, 1).
To decide whether PG(Q) > p, consider a nondeterministic Turing machine with a PPNP oracle. The nondeteterministic
Turing machine is used to guess a completion P̂ (that is of size polynomial in bounded-arity complexity) and then
for verifying whether PP̂(Q) > p. Since PP̂ is a PDB, this verification can be done using the PPNP oracle as shown
in Theorem 7.1. This implies an upper bound NPC, where C = PPNP. Then, using Toda’s result [32], which asserts
that PPPH ⊆ PPP, it is easy to see that C ⊆ PPP and thus NPC = NPPP. To show that deciding whether P

G
(Q) > p in

bounded-arity combined complexity is in coNPPP, we can show that the complement problem, i.e., deciding P
G

(Q) ≤ p
in bounded-arity combined complexity is in NPPP. This can be shown using the same construction, except that the
verification step checks for PP̂(Q) ≤ p, after identifying the right completion. This verification can also be done using
the PPNP oracle since the complement of this check is in PPNP by Theorem 7.1, and PPNP is closed under complement.
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This concludes all membership results in bounded-arity combined complexity, and all hardness results in bounded-
arity combined complexity follow from the hardness results given for data complexity, i.e., by Theorem 6.6.

Proof of Theorem 7.5

We prove PQE(FO) and PQE(FO) are PSpace-complete in bounded-arity combined complexity. Let G = (P, λ)
be an OpenPDB, Q a FO query and p ∈ [0, 1). To decide whether PG(Q) > p, consider a polynomial space bounded
nondeterministic Turing machine that enumerates (exponentially many) extreme completions, each of which is of
polynomial size, keeping only one such completion in memory at a time. Then, for each of these completions P̂, it
tests whether PP̂(Q) > p, which is in PSpace by Theorem 7.2. By similar ideas, we can decide whether P

G
(Q) > p

using a polynomial space bounded nondeterministic Turing machine. PSpace-hardness follows from the hardness
given for probabilistic query evaluation given in Theorem 7.2.
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