
Polynomial Semantics of Tractable Probabilistic Circuits

Oliver Broadrick1 Honghua Zhang1 Guy Van den Broeck1

1Computer Science Dept., University of California, Los Angeles, California, USA

Abstract

Probabilistic circuits compute multilinear polyno-
mials that represent multivariate probability distri-
butions. They are tractable models that support ef-
ficient marginal inference. However, various poly-
nomial semantics have been considered in the liter-
ature (e.g., network polynomials, likelihood poly-
nomials, generating functions, and Fourier trans-
forms). The relationships between circuit represen-
tations of these polynomial encodings of distribu-
tions is largely unknown. In this paper, we prove
that for distributions over binary variables, each
of these probabilistic circuit models is equivalent
in the sense that any circuit for one of them can
be transformed into a circuit for any of the others
with only a polynomial increase in size. They are
therefore all tractable for marginal inference on
the same class of distributions. Finally, we explore
the natural extension of one such polynomial se-
mantics, called probabilistic generating circuits, to
categorical random variables, and establish that
inference becomes #P-hard.

1 INTRODUCTION

Modeling probability distributions in a way that allows
efficient probabilistic inference (e.g. computing marginal
probabilities) is a key challenge in machine learning. Much
research towards meeting this challenge has led to the devel-
opment of families of tractable models including bounded-
treewidth graphical models such as hidden Markov mod-
els [Rabiner and Juang, 1986], (mixtures of) Chow-Liu
Trees [Chow and Liu, 1968, Meila and Jordan, 2000], de-
terminantal point processes (DPPs) [Kulesza and Taskar,
2012], and various families of probabilistic circuits (PCs)
such as sum-product networks [Poon and Domingos, 2011,
Peharz et al., 2018] and probabilistic sentential decision

diagrams [Kisa et al., 2014]. As a unifying representation
for all aforementioned models, probabilistic circuits (PCs)
compactly represent multilinear polynomials that encode
probability distributions (Fig. 2) [Choi et al., 2020]. How-
ever, multiple semantics of the polynomials represented by a
PC have been considered, and their relationships are largely
unknown. We study these various semantics and show1 that
for binary variables they are all equivalent in the sense that
a circuit in one semantics can be tranformed into a circuit in
any of the others with at most a polynomial change in size.

The simplest polynomial encoding of a probability distri-
bution, which we call the likelihood polynomial, directly
computes the probability mass function [Roth and Samdani,
2009]. The standard polynomial used in the PC literature,
called the network polynomial [Darwiche, 2003], uses addi-
tional input variables and special structure to enable com-
putation of arbitrary marginal probabilities. While it is not
obvious whether the circuit representation of a likelihood
polynomial should support marginal inference, we provide a
linear-time inference algorithm. We also give a polynomial-
time transformation from likelihood polynomial circuits to
network polynomial circuits, using a classic circuit com-
plexity result of Strassen [1973] to enable divisions.

Probability generating functions (generating polynomials
for short) have also been considered as semantics for cir-
cuits and support efficient marginal inference [Zhang et al.,
2021, Harviainen et al., 2023]. While it is straightforward
to transform a circuit computing a network polynomial to
a circuit computing a generating polynomial, the other di-
rection is unclear. For example, there are distributions that
can be succinctly expressed by circuits computing gener-
ating polynomials but not by decomposable2 circuits com-

1Some of the results in this paper were found independently
by Agarwal and Bläser [2024] and submitted to a conference
around the same time; they provide the circuit transformation from
generating polynomials to network polynomials (our Theorem 3)
and show that inference in categorical generating circuits is #P-
hard (our Theorem 6).

2A standard structural property discussed in Section 6.

Accepted for the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024).

ar
X

iv
:2

40
2.

09
08

5v
2

 [
cs

.A
I]

 2
8

A
pr

 2
02

4

g(x)p(x, x̄)

p(x)

p−1,1(x) p̂(x, x̄)

p̂(x)

1*

23

4*

5

6

7*

8 9

10*

11

12

g(x)p(x, x̄)

p(x)

p−1,1(x) p̂(x, x̄)

p̂(x)

1*

23

4*

5

6

7*

8 9

10*

11

12

Figure 1: Polynomial time circuit transformations between polynomial semantics including: likelihood p(x), network
p(x, x̄), generating g(x), and Fourier p̂(x) polynomials. Previously known transformations are displayed on the left; (2) is
given in [Zhang et al., 2021], and (3) is implicit in [Roth and Samdani, 2009]. The results in this paper are shown on the
right. Edges labeled by * correspond to transformations which map circuits of size s to circuits of size O(sn2); other edges
correspond to transformations which map circuits of size s to circuits of size O(s).

puting network polynomials that use only positive weights
[Zhang et al., 2021, Martens and Medabalimi, 2015]. How-
ever, we present a polynomial-time transformation from
generating polynomial semantics to network polynomial
semantics again using the result of Strassen [1973].

Lastly, the Fourier transform of the probability mass func-
tion (called characteristic function in probability theory)
has been considered for inference in graphical models [Xue
et al., 2016] and as a semantics for circuits [Yu et al., 2023].
We find simple linear-time transformations between circuits
computing this Fourier transform and circuits computing the
generating polynomial. This connects all aforementioned se-
mantics (likelihood, network, generating, and Fourier poly-
nomials) by polynomial-time transformations; Figure 1 sum-
marizes the transformations. Consequently, any distribution
which can be succinctly expressed in one semantics can
be succinctly expressed in them all, including for instance
DPPs [Kulesza and Taskar, 2012] which were previously
only known to be succinctly expressible using generating
polynomials [Zhang et al., 2021].

Our transformations make no assumptions on the structure
of the circuit. However, it is common to use syntactic con-
straints on a circuit to guarantee desired semantic properties
(e.g. a circuit with nonnegative weights and constants com-
putes a polynomial with nonnegative coefficients), while
possibly sacrificing succinctness [de Colnet and Mengel,
2021]. In particular, PCs are typically assumed to be decom-
posable – children of product nodes contain disjoint sets of
variables [Darwiche and Marquis, 2002] – to guarantee that
the computed polynomial is multilinear. While our transfor-
mations hold regardless of syntactic properties, we show in
Section 6 that they simplify for decomposable circuits.

Finally, we extend our discussion to categorical distributions.
While there is a specialized inference algorithm for circuits
computing generating polynomials for binary distributions,

generating polynomials are well-defined for arbitrary cate-
gorical distributions. Accordingly, in Section 7 we consider
the problem of inference on a circuit computing a generat-
ing polynomial with k categories and show that for k ≥ 4
inference is #P-hard.

2 BACKGROUND

We use the mass function Pr : {0, 1}n → R to specify a
probability distribution on n binary random variables X =
{X1, X2, . . . , Xn}, each taking values in {0, 1}. We denote
[n] = {1, 2, . . . , n}. We use x to denote an assignment to
the random variables, and for any S ⊆ [n], we let xS denote
the assignment Xi = 1 for i ∈ S and Xi = 0 for i /∈ S. We
study polynomials in indeterminates x1, . . . , xn which we
abbreviate to x. A polynomial is multilinear if it is linear in
every variable. For example, the polynomials x1x3 − x2x3

and x1x2x3 + 1 are multilinear, but x2 and x1x
7
2 + 1 are

not.

In this paper we consider multilinear polynomials as repre-
sentations of probability distributions. To compactly repre-
sent polynomials, we use arithmetic circuits, a fundamental
object of study in computer science [Shpilka and Yehu-
dayoff, 2010] which have proven useful for representing
tractable probabilistic models.

Definition 1. An arithmetic circuit (AC) is a directed acyclic
graph consisting of three types of nodes:

1. Sum nodes ⊕ with weighted edges to children;

2. Product nodes ⊗ with unweighted edges to children;

3. Leaf nodes, which are variables in {x1, . . . , xn} or
constants in R.

An AC has one node of in-degree zero, and we refer to it as
the root. The size of an AC is the number of edges in it.

2

Each node in an AC represents a polynomial: (i) each leaf
represents the polynomial xi or a constant, (ii) each sum
node represents the weighted sum of the polynomials repre-
sented by its children, and (iii) each product node represents
the product of the polynomials represented by its children.
The polynomial represented by an AC is the polynomial
represented by its root. We note that the standard definition
of AC in the circuit complexity literature uses unweighted
sums, but the models are equivalent up to constant factors.
For the remainder of this paper we use the term circuit to
mean arithmetic circuit.

Note that when we say that two polynomials/circuits are
the same, we do not mean that they agree on all inputs in
{0, 1}n but that they agree on all real inputs in Rn; the
polynomials are identical elements in the ring of polyno-
mials R[x1, . . . , xn]. Moreover, we note that while a poly-
nomial may be large (e.g. containing exponentially many
nonzero monomials) there may be a much more succinct
circuit computing the polynomial (e.g. of polynomial size
in the number of variables).

3 NETWORK AND LIKELIHOOD
POLYNOMIALS

There are various polynomials containing all the information
of a binary distribution Pr, in the sense that any value Pr(x)
can be recovered from the polynomial alone. It is known that
efficient circuit representations of some such polynomials
allow tractable marginal inference, but a unified analysis of
the various polynomial representations is lacking. In this
section, we begin with the most studied such polynomial,
the network polynomial, and establish its connections to the
more natural – yet still, as we show, tractable – likelihood
polynomial.

3.1 NETWORK POLYNOMIALS

Darwiche [2003] showed that Bayesian Networks can be
compiled to circuits computing a certain polynomial repre-
sentation of their distribution which he called the network
polynomial (also see Castillo et al. [1995]). The network
polynomial of binary probability distribution Pr is

p(x1, . . . , xn, x̄1, . . . , x̄n) =
∑
S⊆[n]

Pr(xS)
∏
i∈S

xi

∏
i/∈S

x̄i.

(1)
Significant work towards learning and applying circuits com-
puting this polynomial has since been developed [Poon and
Domingos, 2011, Peharz et al., 2020, Liu et al., 2021]. In
particular, this is the canonical polynomial computed by
circuits in the growing literature on Probabilistic Circuits
(PC) [Choi et al., 2020]. The key feature of circuits comput-
ing network polynomials is that they enable linear time (and
very simple!) marginal inference. We note that while the

algorithm for marginalization is typically given for smooth
and decomposable circuits, the following Proposition holds
for circuits of any structure which compute a network poly-
nomial.

Proposition 1. Computing marginals on a circuit of size
s representing a network polynomial takes O(s) time. For
the random variable assignment Xi = 1, set xi = 1 and
x̄i = 0; for Xi = 0, set xi = 0 and x̄i = 1; marginalize
out Xi by setting xi = x̄i = 1.

The network polynomial has a very specific structure. First,
it is multilinear. Second, every nonzero monomial contains
either xi or x̄i for every i ∈ {1, 2, . . . , n}. We wonder
whether this structure of the monomials with variables xi

and x̄i is necessary for marginal inference. We next consider
a simple polynomial which does not use this structure with
the x̄i variables, but as we show, still remains tractable.

3.2 LIKELIHOOD POLYNOMIALS

Roth and Samdani [2009] considered perhaps the simplest
polynomial representation of Pr, that which directly com-
putes Pr using variables x1, . . . , xn. Such a polynomial
can be obtained from a network polynomial by substituting
x̄i = 1− xi (transformation 3 in Figure 1). We call this the
likelihood polynomial:

p(x1, . . . , xn) =
∑
S⊆[n]

Pr(xS)
∏
i∈S

xi

∏
i/∈S

(1− xi). (2)

While conceptually simple, it is not clear how or whether it
is possible to efficiently compute marginals given a circuit
representation of the likelihood polynomial. In particular,
Roth and Samdani [2009] considered only “flat” represen-
tations of the likelihood polynomial, where all monomi-
als with nonzero coefficients are stored explicitly. While
marginal inference is linear in the size of the flat represen-
tation, there is an exponential gap in the succinctness of
circuits and flat representations.

We note that both network polynomials and likelihood poly-
nomials are multilinear. Indeed, inference on circuits that
agree with Pr on all inputs in {0, 1}n (like likelihood poly-
nomials) is intractable without multilinearity. For example,
even if we just allow circuits computing polynomials that
are quadratic in each variable, marginal inference is already
#P-hard (e.g. implicit in the proof of Theorem 2 in Khosravi
et al. [2019]).

We show that on a circuit representing a likelihood poly-
nomial, marginal probabilities can be computed in linear
time.

Proposition 2. Marginal probabilities on a circuit of size
s representing a likelihood polynomial can be computed in
time O(s).

3

(a) PC for likelihood polynomial. (b) Leaf nodes replaced with division gadgets.
(c) top: A single division node.
bottom: Sum of homogeneous parts.

Figure 2: An example transforming a circuit representing a likelihood polynomial p(x) = 0.08x1x2+0.16x1+0.12x2+0.09
to a circuit representing a network polynomial. First, (b) gadgets using division nodes are introduced at the leaves (as well
as a multiplying factor) to obtain a rational function equivalent to the network polynomial. Then (c:top) all divisions are
pushed to a single division node at the root so p(x, x̄) = A/B, and (c:bottom) a sum over necessary homogeneous parts of
A and B is formed.

Proof. By definition, a circuit representing a likelihood
polynomial computes

p(x1, . . . , xn) =
∑
S⊆[n]

Pr(xS)
∏
i∈S

xi

∏
i/∈S

(1− xi). (3)

We observe that setting xi = x̄i = 1 in the following expres-
sion3 is equivalent to marginalizing in a network polynomial
as in Proposition 1.(

n∏
i=1

(xi + x̄i)

)
p

(
x1

x1 + x̄1
, . . . ,

xn

xn + x̄n

)
(4)

=

(
n∏

i=1

(xi + x̄i)

)
·

∑
S⊆[n]

Pr(xs)
∏
i∈S

xi

xi + x̄i

∏
i/∈S

(
1− xi

xi + x̄i

)
=
∑
S⊆[n]

Pr(xs)
∏
i∈S

xi

∏
i/∈S

x̄i

= p(x, x̄).

Moreover, this expression (Eq. 4) naturally corresponds to
a circuit computing the network polynomial using division
nodes; starting with a circuit computing the likelihood poly-
nomial, replace inputs xi with xi/(xi + x̄i) and multiply

3Readers familiar with the weighted model counting task on
decomposable logic circuits might recognize a neutral labeling
function in this expression [Kimmig et al., 2017].

the whole circuit by
∏n

i=1(xi + x̄i). However, the PC liter-
ature does not typically use division nodes, and available
software libraries and known algorithms would need to be
reconsidered to use division nodes, not to mention possible
divide-by-zero problems – which will arise in Section 4.
This leads to the question, can we find a circuit computing
an equivalent polynomial without use of division nodes?
Classic work in the circuit complexity literature by Strassen
[1973] provides a positive answer.

Theorem 1 (Strassen). If there is an arithmetic circuit of
size s with division nodes computing polynomial p of de-
gree d in n variables over an infinite field, then there exists
an arithmetic circuit of size poly(s, d, n) that computes p
using only addition and multiplication nodes.

Therfore we have the following theorem, corresponding to
transformation 4 in Figure 1.

Theorem 2. Let Pr be a probability distribution on n binary
random variables. Then a circuit of size s computing the
likelihood polynomial for Pr can be transformed to a circuit
of size O(sn2) computing the network polynomial for Pr.

To illustrate the algorithm, we consider the example in
Figure 2. Figure 2a shows the initial circuit that repre-
sents the likelihood polynomial. Figure 2b shows the cir-
cuit computing the expression with division nodes. To re-
move divisions, the first observation is that all division
nodes can be moved ‘up’ to a single division at the out-
put node using the identities (a/b) × (c/d) = (ac)/(bd)
and (a/b) + (c/d) = (ad+ bc)/(bd), as visualized in Fig-
ure 2c. At this point we have the network polynomial written
as a ratio of two polynomials, p(x, x̄) = A(x, x̄)/B(x, x̄).

4

Without loss of generality we assume B has constant term
one, i.e. B(0, 0, . . . , 0) = 1. If B does not already have
constant term 1, then its inputs can be translated and the
whole function scaled as needed.

One additional result from the circuit complexity literature
is needed at this point; for any circuit f of size s and de-
gree d, a circuit of size O(d2s) can be constructed (with
d+ 1 outputs) computing H0[f], H1[f], . . . ,Hd[f] where
f =

∑
i Hi[f], and each Hi[f] is homogeneous meaning

that every monomial of Hi[f] has degree i [Shpilka and
Yehudayoff, 2010]. This process is called homogenization,
and the Hi[f]’s the homogeneous parts of f .

The final division node can now be eliminated by use of the
common identity a

1−r =
∑∞

j=0 ar
j . We have

p(x, x̄) =
A

B
=

A

1− (1−B)
=

∞∑
j=0

A(1−B)j . (5)

In particular, these equalities hold for the homogeneous
parts of p(x, x̄). And, because B(0, . . . , 0) = 1, we know
that 1 − B has constant term zero, and so all monomials
in (1−B)j have degree at least j. Since we know that the
network polynomial p(x, x̄) has all terms of degree exactly
n, we only need to compute

Hn[p(x, x̄)] =

n∑
j=0

Hn[A(1−B)j],

as illustrated by Figure 2c. In particular, a single circuit com-
puting (1−B)j for j ∈ {0, 1 . . . , n} can be homogenized
in addition to homogenizing A, to compute p(x, x̄) with
size O(sn2).

We note that the circuit obtained by this transformation
contains negative parameters.

4 GENERATING POLYNOMIALS

So far we have considered circuits that directly compute
a distribution. However, there are other well known poly-
nomial representations of probability distributions which
have been shown as promising representations for tractable
probabilistic modeling. Zhang et al. [2021] consider cir-
cuits computing the probability generating function of a
distribution. Generating functions are well studied in mathe-
matics as theoretical objects [Wilf, 2005], but have recently
been identified as useful data structures [Zhang et al., 2021,
Klinkenberg et al., 2023, Zaiser et al., 2023]. The generating
polynomial for probability distribution Pr is

g(x1, . . . , xn) =
∑
S⊆[n]

Pr(xs)
∏
i∈S

xi. (6)

Zhang et al. [2021] call circuits computing generating poly-
nomials Probabilistic Generating Circuits (PGCs) and show
that marginal inference on PGCs is tractable. For a PGC of
size s in n variables, they provide an O(sn log n log log n)
marginal inference algorithm which has been improved by
Harviainen et al. [2023] to O(sn). It is also noted by Zhang
et al. [2021] that circuits computing network polynomials
can be transformed to PGCs simply by replacing x̄i’s by 1,
and so any distribution with a polynomial-size circuit com-
puting its network polynomial also has a polynomial-size
PGC; this is transformation 2 in Figure 1. On the other hand,
they show that there are distributions with polynomial-size
PGCs but for which any decomposable circuit computing
the network polynomial using only positive weights has ex-
ponential size (and additional PGC lower bounds are known
[Bläser, 2023]). It is left as an open question whether this
separation still holds for circuits with unrestricted weights.
We provide a negative answer. Using a method similar to
that in Section 3, we show that given a PGC, one can find
a circuit computing the network polynomial with a polyno-
mial increase in size; this is transformation 1 in Figure 1.

Theorem 3. Let Pr be a probability distribution on n binary
random variables. Then a circuit of size s computing the
probability generating function for Pr can be transformed to
a circuit of size O(sn2) computing the network polynomial
for Pr.

Proof. We obtain the desired circuit by first constructing a
circuit that computes p(x, x̄) using division nodes. Observe(

n∏
i=1

x̄i

)
g

(
x1

x̄1
,
x2

x̄2
, . . . ,

xn

x̄n

)

=

(
n∏

i=1

x̄i

) ∑
S⊆[n]

Pr(xS)
∏
i∈S

xi

x̄i

=
∑
S⊆[n]

Pr(xS)
∏
i∈S

xi

∏
i/∈S

x̄i

= p(x1, . . . , xn, x̄1, . . . , x̄n)

The degree of p(x, x̄) is n, and so using Theorem 1 as
in Section 3, there is a circuit computing p(x, x̄) without
division nodes of size O(sn2).

We note the similarity of the proof of Theorem 2 to that
of Theorem 3. They both involve constructing a circuit to
represent p(x, x̄) initially using division nodes and then
removing the division nodes. We also note the crucial differ-
ence between the proofs; in the construction for Theorem 3,
the circuit with division nodes can not be used to evalu-
ate p(x, x̄) directly because it would require division by
zero whenever x̄i = 0 for any i ∈ [n]. Therefore the abil-
ity to remove divisions while maintaining equivalence of
the polynomial computed is essential for this transforma-
tion to be meaningful. As one immediate consequence, this

5

implies the existence of polynomial size PCs computing
network polynomials for DPPs since Zhang et al. [2021]
showed the existence of polynomial size PGCs for DPPs.
Another practical benefit is that rather than using a bespoke
polynomial-interpolation algorithm for inference in PGCs
[Harviainen et al., 2023], there is a simple feedforward (and
easily implemented, on a GPU for example) method of infer-
ence for PGCs after the transformation has been performed.

5 FOURIER TRANSFORMS

Fourier analysis involves representing functions in the fre-
quency domain and is ubiquitous across math and computer
science. Yu et al. [2023] show that circuits representing
Fourier transforms (called characteristic functions in prob-
ability theory) can improve learning in a mixed discrete-
continuous setting while still supporting marginal inference
when the circuit is smooth and decomposable (see Section 6
for discussion of these properties). Xue et al. [2016] use
Fourier representations for inference in graphical models too.
The Fourier transform [O’Donnell, 2014] of pseudoboolean
function p : {0, 1}n → R is the function p̂ : {0, 1}n → R
given by

p̂(x) = 2−n
∑

v∈{0,1}n

p(v)(−1)⟨v,x⟩ (7)

where ⟨v, x⟩ is the standard inner (dot) product over the
reals. It is convenient that in this binary case, p̂(x) can also
be simply written as a multilinear polynomial (note that the
equality holds on its domain {0, 1}n):

p̂(x) = 2−n
∑
S⊆[n]

p(vS)
∏
i∈S

(1− 2xi) (8)

where vS is the element of {0, 1}n with vi = 1 for i ∈ S
and vi = 0 for i /∈ S. To see this, identify S with vS ,
and then (−1)⟨vS ,x⟩ = (−1)

∑
i∈S xi =

∏
i∈S(−1)xi =∏

i∈S(1 − 2xi). For the rest of the paper we use p̂(x) to
refer to this multilinear polynomial (Eq. 8). We note that
Fourier analysis of binary functions is a rich subject in its
own right and refer the reader to O’Donnell [2014].

While there is no obvious connection between network
polynomials, generating functions, and Fourier transforms,
we show that they are in fact closely related. This rela-
tion hinges on switching between the domains {0, 1}n and
{−1, 1}n. In particular, we define for any multilinear poly-
nomial f its counterpart f−1,1 as follows:

f−1,1(x1, . . . , xn) = f

(
1− x1

2
, . . . ,

1− xn

2

)
, (9)

also a multilinear polynomial. Similarly, observe that we
can write

f(x1, . . . , xn) = f−1,1 (1− 2x1, . . . , 1− 2xn) . (10)

Note that f and f−1,1 compute the same function on the
respective domains {0, 1}n and {−1, 1}n up to the bijection
ϕ : {0, 1} → {−1, 1} given by ϕ(b) = (−1)b applied
bitwise. In particular, Equations 9 and 10 can be applied
to circuits with modifications at only the leaves, giving the
following lemma.

Lemma 1. A circuit of size s computing polynomial f (re-
spectively f−1,1) can be transformed to a circuit of size O(s)
computing f−1,1 (respectively f).

We now make a simple observation that connects Fourier
transforms with generating polynomials; up to a constant
factor, generating polynomials are Fourier transforms, writ-
ten on the domain {−1, 1}n.

Proposition 3. Let Pr be a probability distribution on n
binary random variables with generating polynomial g(x)
and Fourier polynomial p̂−1,1(x) on the domain {−1, 1}.
Then g(x) = 2np̂−1,1(x).

Proof.

g(x) =
∑
S⊆[n]

Pr(xS)
∏
i∈S

xi

=
∑
S⊆[n]

Pr(xS)
∏
i∈S

(
1− 2

(
1− x1

2

))
= 2np̂−1,1(x).

Using only the ability to switch between the domains
{0, 1}n and {−1, 1}n and Proposition 3, we now have trans-
formations 11 and 12 in Figure 1.

Theorem 4. Let Pr be a probability distribution on n binary
random variables. Then a circuit of size s computing the
generating polynomial g(x) (respectively p̂(x)) for Pr can
be transformed to a circuit of size O(s) representing the
Fourier transform p̂(x) (respectively g(x)) for Pr.

Proof. Proposition 3 and Lemma 1.

Having observed this connection between generating poly-
nomials and Fourier polynomials, we have completed a path
between p(x) and p̂(x) in Figure 1 (the upper half), i.e. a
polynomial-time transformation between circuits computing
them. However, we observe that this path more naturally
corresponds to computing the inverse Fourier transform, and
there is a symmetric set of transformations that compute
p̂(x) from p(x) in a more natural way. These transforma-
tions will form the lower half of Figure 1. We now give the
more standard definition of the Boolean Fourier transform
p̂(x), in which the values of p̂(x) are the coefficients needed

6

to write p(x) as a linear combination of parity functions
[O’Donnell, 2014, Thm 1.1]:

p(x) =
∑
S⊆[n]

p̂(vS)(−1)
∑

i∈S xi

=
∑
S⊆[n]

p̂(vS)
∏
i∈S

(1− 2xi)

where equalities hold on the domain {0, 1}n. The values
{p̂(vS)}S⊆[n] are called the Fourier coefficients, or, col-
lectively, the Fourier spectrum of p(x). Moreover, this is
more naturally written on the domain {−1, 1}n due to the
equivalence of the parity functions

∏
i∈S(1 − 2xi) to the

monomials
∏

i∈S xi on the respective domains {0, 1}n and
{−1, 1}n. That is, we have

p−1,1(x) =
∑
S⊆[n]

p̂(vS)
∏
i∈S

xi. (11)

Now we recall the transformation from g(x) to
p(x, x̄) (Theorem 3 and transformation 1 in Fig-
ure 1). In general, this transformation takes a poly-
nomial in indeterminates x1, . . . , xn with monomi-
als

{
cS
∏

i∈S xi

}
S⊆[n]

and produces a polynomial in
indeterminates x1, . . . , xn, x̄1, . . . , x̄n with monomials{
cS
∏

i∈S xi

∏
i/∈S x̄i

}
S⊆[n]

; this latter polynomial allows
us to ‘extract’ the coefficients of the former by the substi-
tution x̄i = 1 − xi. As seen in Eq 11, we now have an
identical problem where we would like to compute p̂(x)
from p−1,1(x), i.e. to ‘extract’ the Fourier coefficients from
p−1,1(x). So, we analagously define the polynomial p̂(x, x̄)

p̂(x, x̄) =
∑
S⊆[n]

p̂(vS)
∏
i∈S

xi

∏
i/∈S

x̄i

and obtain transformations 7 and 8 in Figure 1 (by Theo-
rem 3). Moreover, by definition, the relationship between
p̂(x, x̄) and p̂(x) is identical to that between p(x, x̄) and
p(x), and so transformations 9 and 10 in Figure 1 follow
(i.e. using Theorem 2).

Having now completed the transformations presented in Fig-
ure 1, we ask how they simplify in the presence of structural
constraints common in the PC literature.

6 DECOMPOSABILITY

So far we make no assumptions on the structural prop-
erties of circuits; in this section, we consider the special
case where the circuit is decomposable [Darwiche and Mar-
quis, 2002], which is a common assumption that guarantees
tractable marginal inference. We show that in this case some
of the transformations described before can be simplified.
We use the scope of a node to refer to the set of all i such that
variables xi or x̄i appear as inputs among its descendants
and itself.

Definition 2 (Decomposability). A product node is decom-
posable if its children have disjoint scopes. A circuit is
decomposable if all its product nodes are decomposable.4

Definition 3 (Smoothness). A sum node in indeterminates
x and x̄ is smooth if its children have the same scope. A
circuit is smooth if all of its sum nodes are smooth.

Decomposability is a very common property because it
guarantees multilinearity and, when paired with smoothness,
guarantees tractable marginal inference by computing a
network polynomial. In particular, it is well known that if a
circuit is smooth and decomposable, it computes a network
polynomial [Poon and Domingos, 2011, Choi et al., 2020].
We note that if a circuit is decomposable, then it can be made
smooth efficiently (increasing the size at most by a linear
factor [Choi et al., 2020] and less for certain decomposable
structures Shih et al. [2019]).

We now show how the transformations used for Theorems 2,
3, and 4 can be simplified for decomposable circuits. First,
we show that in decomposable circuits Fourier transforms
correspond to trivial modifications at only the leaves.

Theorem 5. A decomposable circuit of size s represent-
ing a likelihood polynomial p(x) can be transformed to a
decomposable circuit of size O(s) representing its Fourier
transform p̂(x) by only modifying the leaves.

We give a full proof of Theorem 5 in the Appendix.

Proof Sketch. A circuit representing p̂(x) can be con-
structed with modifications pushed to the leaves inductively.
Decomposability enables pushing past product nodes; lin-
earity of the Fourier transform enables pushing past sum
nodes. Leaf nodes are univariate and so can be transformed
directly.

Transformations 1 and 4 in Figure 1 can be simplified when
the initial circuits are decomposable; the decomposability
is preserved during the transformation, and the worst-case
increase in size is lowered to O(sn). First, a decomposable
circuit of size s computing a likelihood polynomial p(x)
can be transformed to decomposable circuit of size O(sn)
computing p(x, x̄). We note that this problem is exactly that
of smoothing [Darwiche, 2000, Shih et al., 2019] and so
the following lemma is included for completeness but is
already known. In particular, this shows how Theorem 2 can
be viewed as a generalization of smoothing to circuits that
are not decomposable.

Lemma 2 (Darwiche [2000], Shih et al. [2019]). A decom-
posable circuit of size s computing likelihood polynomial
p(x) can be transformed to a decomposable circuit of size
O(sn) computing network polynomial p(x, x̄).

4This property is called syntactic multilinearity in the arith-
metic circuits literature.

7

Also, a decomposable circuit of size s computing a generat-
ing polynomial g(x) can be transformed to decomposable
circuit of size O(sn) computing p(x, x̄). This problem is
very similar to smoothing and can be solved in the same
way; rather than smoothing with gadgets computing xi+ x̄i,
simply use x̄i.

Lemma 3. A decomposable circuit of size s computing gen-
erating polynomial g(x) can be transformed to a decompos-
able circuit of size O(sn) computing network polynomial
p(x, x̄).

We note that Lemmas 2 and 3 hold also for the symmetric
transformations as described in Section 5, i.e. for decompos-
able versions of transformations 7 and 10 in Figure 1.

7 CATEGORICAL DISTRIBUTIONS

So far we have considered binary probability distributions
with probability mass functions of the form Pr:{0, 1}n→R.
Of course, categorical distributions with mass functions of
the form Pr : Sn → R for an arbitrary finite set S are also
of interest. In the PC literature, categorical distributions are
typically encoded as binary distributions using binary indi-
cator variables [Darwiche, 2003, Poon and Domingos, 2011,
Choi et al., 2020]. Indeed, network polynomials have no
other obvious extension to the categorical setting; however,
generating polynomials do. In fact, the generating polyno-
mials considered in [Zhang et al., 2021] are a restriction to
the binary case of the following more general and standard
definition. Let Pr : Kn → R be a probability mass func-
tion with K = {0, 1, 2, . . . , k − 1}. Then the probability
generating polynomial of Pr is

g(x) =
∑

(d1,d2,...,dn)∈Kn

Pr(d1, . . . , dn)x
d1
1 xd2

2 · · ·xdn
n .

(12)
It is natural then to consider a categorical Probabilistic Gen-
erating Circuit (PGC) as a circuit computing the generating
polynomial of a categorical distribution with more than two
categories. This begs the question, are categorical PGCs
a tractable model in general? To this, we give a negative
answer. In fact for variables with k ≥ 4 categories, not only
is marginal inference hard, but even computing likelihoods
is hard.

Theorem 6. Computing likelihoods on a categorical PGC
is #P-hard for k ≥ 4 categories.

Here we provide a sketch of our proof of Theorem 6, giving
the full proof in the Appendix. Our proof is a reduction
from {0, 1}-permanent to categorical PGC inference. The
classic work of Valiant [1979b] shows that computing the
permanent of matrices with entries in {0, 1} is #P-complete.

0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0

→

0 1 0 0 0
0 0 0 0 1
0 0 0 0 1
0 1 0 0 0
0 1 0 0 1

Figure 3: An example of the permanent-preserving oper-
ation used to make M sparse. The new row and column
are shaded in blue. The newly-added nonzero entries that
preserve the permanent of the matrix are singly-underlined.
The two nonzero entries that moved from their original
column (highlighted in orange) to the new one are doubly-
underlined. The number of nonzero entries in the second
column had decreased by one.

The permanent of a matrix M is

perM =
∑
σ∈Sn

n∏
i=1

Mi,σ(i) (13)

where Sn is the symmetric group of order n. Our reduction
proceeds in two steps.

First, we find a (modestly) larger matrix M ′ with the same
permanent as M and with the sparsity property that every
column contains at most three nonzero entries. To do so, let
M ∈ {0, 1}n×n, and assume the tth column of M still has
more than 3 nonzero entries. Add a new (n+ 1)th row and
column to the matrix with diagonal entry 1, and with the
tth entry of the new row 1, and all other entries zero. We
are now free to ‘move’ any two nonzero entries from the tth
column to the new (n+ 1)th column without changing the
permanent of the matrix. Figure 3 shows an example of this
sparsifying, permanent-preserving operation. The number
of nonzero entries in the tth column has now decreased by
one (and the new column has three nonzero entries), and
so repeating this operation at most n2 times will yield the
desired matrix M ′.

Second, we use a polynomial construction from Valiant
[1979a] (and Koiran and Perifel [2007]):

g(x1, . . . , xn) =

n′∏
i=1

n′∑
j=1

M ′
i,jxj . (14)

The coefficient of the monomial
∏n′

i=1 xi in g(x) is exactly
perM ′ = perM . And, by the column-sparsity of M ′, any
xi has degree at most 3 in g, and so g can be interpretted as a
categorical generating polynomial for k = 4 categories. By
this interpretation, the coefficient of the monomial

∏n′

i=1 xi

in g is the probability of the assignment X1 = X2 = . . . =
Xn′ = 1, a single likelihood.

This motivates the need to research tractable categorical dis-
tributions, for example, possibly in the direction suggested
by Cao et al. [2023]. In particular, this calls for careful con-

8

sideration of the use of generating functions over categorical
variables, which are not tractable models in general.

8 CONCLUSION

We studied tractable probabilistic circuits computing vari-
ous polynomial representations of probability distributions.
For binary probability distributions we show that a number
of previously studied polynomials have equally expressive-
efficient circuit representations. Among circuits computing
network, likelihood, generating, and Fourier polynomials,
all support tractable marginal inference, and, given a circuit
computing any one polynomial, a circuit computing any
other can be obtained with at most a polynomial increase
in size. This establishes a relationship between several
previously-independent marginal inference algorithms, and
establishes one novel marginal inference algorithm, namely
for circuits computing likelihood polynomials. These results
connect well-studied mathematical objects like generating
functions and Fourier transforms in their forms as tractable
probabilistic circuits, opening up potential future research,
for example leveraging theory developed in one semantics
and translating it to another, or learning in one representa-
tion space and transforming to another.

Acknowledgements

We thank Benjie Wang, Poorva Garg, and William Cao
for helpful comments on this work. This work was
funded in part by the DARPA PTG Program under award
HR00112220005, the DARPA ANSR program under award
FA8750-23-2-0004, and NSF grants #IIS-1943641, #IIS-
1956441, #CCF-1837129.

References

Sanyam Agarwal and Markus Bläser. Probabilistic generat-
ing circuits – demystified, 2024.

Markus Bläser. Not all strongly rayleigh distributions have
small probabilistic generating circuits. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett, editors, International
Conference on Machine Learning, ICML 2023, 23-29 July
2023, Honolulu, Hawaii, USA, volume 202 of Proceed-
ings of Machine Learning Research, pages 2592–2602.
PMLR, 2023. URL https://proceedings.mlr.
press/v202/blaser23a.html.

William X Cao, Poorva Garg, Ryan Tjoa, Steven Holtzen,
Todd Millstein, and Guy Van den Broeck. Scaling integer
arithmetic in probabilistic programs. In Uncertainty in
Artificial Intelligence, pages 260–270. PMLR, 2023.

Enrique Castillo, José Manuel Gutiérrez, and Ali S Hadi.
Parametric structure of probabilities in bayesian networks.
In European Conference on Symbolic and Quantitative
Approaches to Reasoning and Uncertainty, pages 89–98.
Springer, 1995.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic models. oct 2020. URL http://starai.
cs.ucla.edu/papers/ProbCirc20.pdf.

CKCN Chow and Cong Liu. Approximating discrete proba-
bility distributions with dependence trees. IEEE transac-
tions on Information Theory, 14(3):462–467, 1968.

Adnan Darwiche. On the tractable counting of theory mod-
els and its application to belief revision and truth mainte-
nance, 2000.

Adnan Darwiche. A differential approach to inference in
bayesian networks. J. ACM, 50(3):280–305, may 2003.
ISSN 0004-5411. doi: 10.1145/765568.765570. URL
https://doi.org/10.1145/765568.765570.

Adnan Darwiche and Pierre Marquis. A knowledge compi-
lation map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

Alexis de Colnet and Stefan Mengel. A compilation of
succinctness results for arithmetic circuits. In Meghyn
Bienvenu, Gerhard Lakemeyer, and Esra Erdem, edi-
tors, Proceedings of the 18th International Conference
on Principles of Knowledge Representation and Rea-
soning, KR 2021, Online event, November 3-12, 2021,
pages 205–215, 2021. doi: 10.24963/KR.2021/20. URL
https://doi.org/10.24963/kr.2021/20.

Juha Harviainen, Vaidyanathan Peruvemba Ramaswamy,
and Mikko Koivisto. On inference and learning with
probabilistic generating circuits. In The 39th Conference
on Uncertainty in Artificial Intelligence, 2023.

Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Ver-
gari, and Guy Van den Broeck. On tractable computation
of expected predictions. Curran Associates Inc., Red
Hook, NY, USA, 2019.

Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt.
Algebraic model counting. Journal of Applied Logic, 22:
46–62, 2017. ISSN 1570-8683. SI:Uncertain Reasoning.

Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan
Darwiche. Probabilistic sentential decision diagrams.
In Proceedings of the 14th International Conference on
Principles of Knowledge Representation and Reasoning
(KR), July 2014. URL http://starai.cs.ucla.
edu/papers/KisaKR14.pdf.

9

https://proceedings.mlr.press/v202/blaser23a.html
https://proceedings.mlr.press/v202/blaser23a.html
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
https://doi.org/10.1145/765568.765570
https://doi.org/10.24963/kr.2021/20
http://starai.cs.ucla.edu/papers/KisaKR14.pdf
http://starai.cs.ucla.edu/papers/KisaKR14.pdf

Lutz Klinkenberg, Tobias Winkler, Mingshuai Chen, and
Joost-Pieter Katoen. Exact probabilistic inference using
generating functions, 2023.

Pascal Koiran and Sylvain Perifel. The complexity of two
problems on arithmetic circuits. Theoretical Computer
Science, 389(1):172–181, 2007. ISSN 0304-3975.

Alex Kulesza and Ben Taskar. Determinantal point pro-
cesses for machine learning. Foundations and Trends®
in Machine Learning, 5(2–3):123–286, 2012. ISSN
1935-8237. doi: 10.1561/2200000044. URL http:
//dx.doi.org/10.1561/2200000044.

Anji Liu, Stephan Mandt, and Guy Van den Broeck. Loss-
less compression with probabilistic circuits. arXiv
preprint arXiv:2111.11632, 2021.

James Martens and Venkatesh Medabalimi. On the expres-
sive efficiency of sum product networks, 2015.

Marina Meila and Michael I Jordan. Learning with mixtures
of trees. Journal of Machine Learning Research, 1(Oct):
1–48, 2000.

Ryan O’Donnell. Analysis of Boolean Functions. Cam-
bridge University Press, 2014.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Martin Trapp, Kristian Kersting, and Zoubin
Ghahramani. Probabilistic deep learning using random
sum-product networks. arXiv preprint arXiv:1806.01910,
2018.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner,
Alejandro Molina, Martin Trapp, Guy Van den Broeck,
Kristian Kersting, and Zoubin Ghahramani. Einsum net-
works: Fast and scalable learning of tractable probabilistic
circuits. In International Conference on Machine Learn-
ing, pages 7563–7574. PMLR, 2020.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. In 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Work-
shops), pages 689–690, 2011. doi: 10.1109/ICCVW.2011.
6130310.

Lawrence Rabiner and Biinghwang Juang. An introduction
to hidden markov models. ieee assp magazine, 3(1):4–16,
1986.

Dan Roth and Rajhans Samdani. Learning multi-linear
representations of distributions for efficient inference.
Machine Learning, 76(2):195–209, 2009. doi: 10.1007/
s10994-009-5130-x. URL https://doi.org/10.
1007/s10994-009-5130-x.

Andy Shih, Guy Van den Broeck, Paul Beame, and Antoine
Amarilli. Smoothing structured decomposable circuits.
Curran Associates Inc., Red Hook, NY, USA, 2019.

Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A
survey of recent results and open questions. Foundations
and Trends in Theoretical Computer Science, 5:207–388,
01 2010. doi: 10.1561/0400000039.

Volker Strassen. Vermeidung von divisionen. Journal für die
reine und angewandte Mathematik, 264:184–202, 1973.
URL http://eudml.org/doc/151394.

L. G. Valiant. Completeness classes in algebra. In
Proceedings of the Eleventh Annual ACM Symposium
on Theory of Computing, STOC ’79, page 249–261,
New York, NY, USA, 1979a. Association for Com-
puting Machinery. ISBN 9781450374385. doi: 10.
1145/800135.804419. URL https://doi.org/10.
1145/800135.804419.

L.G. Valiant. The complexity of computing the permanent.
Theoretical Computer Science, 8(2):189–201, 1979b.
ISSN 0304-3975.

Herbert S Wilf. generatingfunctionology. CRC press, 2005.

Yexiang Xue, Stefano Ermon, Ronan Le Bras, Carla P.
Gomes, and Bart Selman. Variable elimination in the
fourier domain. In Maria Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of The 33rd Interna-
tional Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 285–
294, New York, New York, USA, 20–22 Jun 2016. PMLR.
URL https://proceedings.mlr.press/v48/
xue16.html.

Zhongjie Yu, Martin Trapp, and Kristian Kersting. Charac-
teristic circuit. In Proceedings of the 37th Conference on
Neural Information Processing Systems (NeurIPS), 2023.

Fabian Zaiser, Andrzej S. Murawski, and Luke Ong. Exact
bayesian inference on discrete models via probability gen-
erating functions: A probabilistic programming approach,
2023.

Honghua Zhang, Brendan Juba, and Guy Van den Broeck.
Probabilistic generating circuits. In International Confer-
ence on Machine Learning, pages 12447–12457. PMLR,
2021.

10

http://dx.doi.org/10.1561/2200000044
http://dx.doi.org/10.1561/2200000044
https://doi.org/10.1007/s10994-009-5130-x
https://doi.org/10.1007/s10994-009-5130-x
http://eudml.org/doc/151394
https://doi.org/10.1145/800135.804419
https://doi.org/10.1145/800135.804419
https://proceedings.mlr.press/v48/xue16.html
https://proceedings.mlr.press/v48/xue16.html

A PROOFS

Proof of Theorem 5.

Proof. Let p(x) be a decomposable circuit of size s representing a likelihood polynomial p(x). We construct p̂(x) inductively
as follows. For a product node we have p(x) = q(xq)r(xr) where xq and xr partition x and with xq of dimension 0 ≤ d ≤ n.
We have

p̂(x) = 2−n
∑

v∈{0,1}n

p(v)(−1)⟨v,x⟩ (15)

= 2−n
∑

v∈{0,1}n

q(vq)r(vr)(−1)⟨vq,xq⟩(−1)⟨vr,xr⟩ (16)

=

2−d
∑

vq∈{0,1}d

q(vq)(−1)⟨vq,xq⟩

 ·

2d−n
∑

vr∈{0,1}n−d

r(vr)(−1)⟨vr,xr⟩

 (17)

= q̂(xq)r̂(xr) (18)

where the first equality follows from definition, the second from the hypothesis, the third by factoring, and the final from
definition. For a sum node, we have p(x) =

∑
i wipi(x), and so

p̂(x) = 2−n
∑

v∈{0,1}n

p(v)(−1)⟨v,x⟩ (19)

= 2−n
∑

v∈{0,1}n

(∑
i

wipi(v)

)
(−1)⟨v,x⟩ (20)

=
∑
i

wi2
−n

∑
v∈{0,1}n

pi(v)(−1)⟨v,x⟩ (21)

=
∑
i

wip̂i(x) (22)

where the equalities follow, respectively, from definition, hypothesis, commutativity of addition, and definition.

For leaf nodes, it suffices to consider only univariate leaves that are children of sums; for any leaf a child of a product node,
add a sum node with weight 1 between them. Then, for a univariate child of a sum node with scope the singleton {i}, we
have either p(xi) = c for constant c ∈ R, and so

p̂(xi) = 2−n(c+ c(1− 2xi))

or p(xi) = xi, in which case

p̂(xi) = 2−n(1− 2xi).

Proof of Theorem 6.

Proof. We provide a deterministic, polynomial-time reduction from {0, 1}-permanent to likelihood computation on a
categorical PGC with k = 4 categories. Let M ∈ {0, 1}n×n. Our reduction proceeds in two steps. We first ‘sparsify’ the
matrix M by finding a (modestly) larger matrix M ′ with the property that every column of M ′ contains at most three
nonzero entries, while not changing the permanent: i.e. perM = perM ′. Then, we construct a simple circuit5 using the
entries of M ′ which computes a polynomial g such that the coefficient of a certain monomial in g is exactly perM = perM ′.
The column-sparsity of M ′ guarantees that the degree of g is at most 3, making it a valid generating function for k = 4
categories, and the desired coefficient is a particular likelihood.

5This polynomial has appeared before in [Valiant, 1979a, Koiran and Perifel, 2007].

11

Step 1: Suppose the tth column of M contains more than three nonzero entries; if there is no such column, proceed to
the second step. Intuitively, to ‘sparsify’ M we can append a new (n + 1)th row and column to the matrix, setting their
main diagonal entry to 1 as well as the tth entry of the new row – all other entries zero. Then, we are free to ‘move’
nonzero entries from the tth column to the new (n+ 1)th column without affecting the permanent. For any nonzero term
in perM =

∑
σ

∏n
i Mi,σ(i), there is a corresponding nonzero term in perM ′ =

∑
σ

∏n+1
i M ′

i,σ(i), and no new nonzero
terms have been introduced.

We now show this explicitly. Let M ∈ {0, 1}n and assume the tth column of M has more than three nonzero entries. Let
Ma,t = Mb,t = 1 with a ̸= b be two of the nonzero entries in the tth column. Form a new matrix which is simply M but
with these two entries set to zero:

M∗
i,j =

{
0 i ∈ {a, b} and j = t

Mi,j else
(23)

We now define the new (n+ 1)th row and column r, c ∈ {0, 1}n. Set rt = 1 and for j ̸= t set rj = 0. Set ca = cb = 1 and
for j /∈ {a, b} set cj = 0. We now form the new matrix M ′:

M ′ =

c1
...
cn

r1 · · · rn 1

M∗

 (24)

To show that perM = perM ′, we provide a bijection between the nonzero monomials of perM =
∑

σ

∏n
i Mi,σ(i) and the

those of perM ′ =
∑

σ

∏n+1
i M ′

i,σ(i) (viewing the monomials as formal objects). Recall that perM is the sum

perM =
∑
σ∈Sn

n∏
i=1

Mi,σ(i) (25)

Because σ is a bijection, every term
∏n

i=1 Mi,σ(i) in this sum contains Mi,t for some 0 ≤ i ≤ n. If i /∈ {a, b} we map

M1,σ(1) · · ·Mn,σ(n) 7→ M1,σ(1) · · ·Mn,σ(n)Mn+1,n+1. (26)

If i ∈ {a, b} we map

M1,σ(1) · · ·Mi,σ(i)=t · · ·Mn,σ(n) 7→ M1,σ(1) · · ·Mn+1,t · · ·Mn,σ(n)Mi,n+1. (27)

This map is injective by construction. To show that it is also surjective, consider an arbitrary nonzero term m =
∏n+1

i M ′
i,σ(i)

in perM ′ =
∑

σ

∏n+1
i M ′

i,σ(i). Since Mn+1,t and Mn+1,n+1 are the only two nonzero entries of the (n+ 1)th row of M ,
one of them must appear in m. If Mn+1,n+1 is in m, then the the monomial obtained by removing Mn+1,n+1 from m is the
preimage of m by Eq. 26. If Mn+1,t appears in m, then some other nonzero entry of the (n+ 1)th column must appear in
m, namely Mi,n+1 for i ∈ {a, b}. So remove Mi,n+1 and Mn+1,t from m and inserts Mi,t to obtain the preimage of m by
Eq. 27. So, we have perM = perM ′.

Observe that the number of nonzero entries in column t has decreased by one, and the number of nonzero entries in the new
(n + 1)th column is three. Repeat this step until all columns contain at most three nonzero entries, requiring at most n2

repetitions.

Step 2: Call the matrix resulting from the first step M ′ ∈ {0, 1}n′×n′
(where n′ ≤ n+ n2). Now consider the polynomial

g(x1, . . . , xn′) =

n′∏
i=1

n′∑
j=1

M ′
i,jxj

=(M ′
1,1x1 +M ′

1,2x2 + . . .+M ′
1,n′xn′)

·(M ′
2,1x1 +M ′

2,2x2 + . . .+M ′
2,n′xn′)

...
·(M ′

n′,1x1 +M ′
n′,2x2 + . . .+M ′

n′,n′xn′)

12

where M ′
i,j ∈ {0, 1} are the entries of M ′. Note that this expression for g(x) directly provides a polynomial size circuit for

g(x) (in fact, a formula: a circuit whose DAG is a tree). Observe that the coefficient of the monomial
∏n′

i=1 xi in g(x) is
exactly perM ′ = perM . Moreover, the degree of any xi in g(x) is at most three by the column-sparsity of M ′, and so g(x)
can be interpreted as a categorical PGC with k = 4 categories. Given this interpretation, the coefficient of the monomial∏n′

i=1 xi in g(x) (which is perM) is the probability of the assignment X1 = X2 = . . . = Xn′ = 1, a single likelihood.

13

	Introduction
	Background
	Network and likelihood polynomials
	Network Polynomials
	Likelihood Polynomials

	Generating Polynomials
	Fourier Transforms
	Decomposability
	Categorical Distributions
	Conclusion
	Proofs

