
Probabilistic Circuits for Cumulative Distribution Functions

Oliver Broadrick1 William Cao1 Benjie Wang1 Martin Trapp2 Guy Van den Broeck1

1Computer Science Dept., University of California , Los Angeles, California, USA
2Department of Computer Science, Aalto University, Espoo, Finland

Abstract

A probabilistic circuit (PC) succinctly expresses a
function that represents a multivariate probability
distribution and, given sufficient structural proper-
ties of the circuit, supports efficient probabilistic
inference. Typically a PC computes the probability
mass (or density) function (PMF or PDF) of the
distribution. We consider PCs instead computing
the cumulative distribution function (CDF). We
show that for distributions over binary random
variables these representations (PMF and CDF)
are essentially equivalent, in the sense that one can
be transformed to the other in polynomial time.
We then show how a similar equivalence holds
for distributions over finite discrete variables us-
ing a modification of the standard encoding with
binary variables that aligns with the CDF seman-
tics. Finally we show that for continuous variables,
smooth, decomposable PCs computing PDFs and
CDFs can be efficiently transformed to each other
by modifying only the leaves of the circuit.

1 INTRODUCTION

Modeling multivariate probability distributions in a way
that is both expressive and allows efficient probabilistic rea-
soning is a fundamental problem in the field of artificial
intelligence. Probabilistic circuits (PCs) provide a unifying
framework for a myriad of tractable probabilistic models
and reduce tractability to syntactic properties of the under-
lying circuit [Darwiche, 2003, Poon and Domingos, 2011,
Choi et al., 2020]. In general, a PC computes a multilin-
ear polynomial in its inputs, most commonly computing a
probability mass (or density) function (PMF/PDF). How-
ever, other polynomials can be used to encode probability
distributions and have been studied as alternative semantics
for PCs, including generating functions [Zhang et al., 2021,

Harviainen et al., 2023, Bläser, 2023] and characteristic
functions [Yu et al., 2023]. In this paper, we extend this line
of work and consider the cumulative distribution function
(CDF) as a semantics for PCs.

Unlike the PMF, which computes the probability of an input
assignment, the CDF computes the probability of realizing
any assignment with entries elementwise less than or equal
to the input assignment. The CDF exists for every real-
valued multivariate probability distribution, which is not true
for mass or density functions, and has broad applications in
machine learning and statistics [Huang, 2009, Huang and
Jojic, 2010, Hyvärinen and Pajunen, 1999, Gresele et al.,
2021]. A particularly useful property of the CDF arises from
its interpretation as a transformation, i.e., CDF transformed
random variables are uniformly distributed. This property
has been heavily exploited in the literature, for example, in
copulas [Ling et al., 2020], for inverse transform sampling
[Gentle, 2003], and density estimation via boosting [Awaya
and Ma, 2021].

While CDFs are defined for arbitrary distributions over real-
valued random variables, we consider three important spe-
cial cases. We begin with distributions over binary random
variables for which PCs are known to be tractable when
they express a multilinear polynomial that computes the
PMF (called the PMF polynomial). Therefore we consider
multilinear polynomials that compute the CDF, which we
call CDF polynomials. We find that for binary random vari-
ables, CDF polynomials are exactly equal to probability
generating functions (PGFs). This surprising equivalence
immediately implies that a circuit computing the PMF (re-
spectively CDF) can be transformed to a circuit computing
the CDF (respectively PMF) in polynomial time, by recent
results [Broadrick et al., 2024, Agarwal and Bläser, 2024].
Moreover, our new interpretation of PGFs as CDFs enables
us to give an alternative and interesting proof of the trans-
formation from PGFs to PMFs based on the generalized
principle of inclusion-exclusion.

Next we consider distributions over finite discrete random

Accepted for the 7th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2024).

variables. Typically in the PC literature, such variables are
handled by encoding them with binary variables, e.g., with
a one-hot encoding. We find that by using a simple new
encoding that respects the less-than-or-equal-to relation, we
can ensure not only that the PMFs agree up to the encoding
(as normal) but that also the CDFs agree up to the encoding.
This allows us to reduce the finite discrete case to the binary
case, applying the transformations for the binary case to
obtain a similar equivalence.

Finally, we consider continuous variables, finding that for
PCs which are smooth and decomposable – standard struc-
tural properties used in the literature [Darwiche and Marquis,
2002, Choi et al., 2020] – simple modifications to the leaves
of the PC enable transformations between PDFs and CDFs.
Our results relating CDFs to PMFs/PDFs complement and
extend those of Broadrick et al. [2024] and Agarwal and
Bläser [2024], who find that several other PC semantics
are equivalent for binary random variables but do not con-
sider CDFs.

2 BACKGROUND ON CIRCUITS

We study probabilistic circuits (PCs): computation graphs
that, given sufficient structural properties, render inference
tasks tractable. Let X = {X1, . . . , Xn} be random vari-
ables, and denote the set of all assignments to X by val(X).

Definition 1. A probabilistic circuit (PC) in variables
X = {X1, . . . , Xn} is a rooted directed acyclic graph.
Each node v is either (i) a product node, (ii) a sum node
with edges to children labeled by weights wv1, . . . , wvk ∈ R,
or (iii) a leaf node, labeled by a function lv : val(Xi) → R
for some Xi. Each node v (with children v1, . . . , vk) com-
putes a polynomial whose indeterminates are l1, . . . , lm (the
functions labeling the leaves of the PC):

pv(l1, . . . , lm)

=


∏k

i=1 pvi(l1, . . . , lm) if v a product node∑k
i=1 wvipvi(l1, . . . , lm) if v a sum node

lv if v a leaf node.

The polynomial p computed by a PC is the polynomial
computed by its root. The function computed by a PC is
P : val(X) → R given by

P (x) = p(l1(x), . . . , lm(x)).

Lastly, the size of a PC is the number of edges in it.

If each Xi is binary, taking values in {0, 1}, we commonly
consider the leaf functions xi and x̄i respectively mapping
the bit b ∈ {0, 1} = val(Xi) to b and 1 − b. In the case
that we only use the leaf functions xi, then the polynomial
computed by a PC and the function computed by a PC
effectively coincide.

Note that we will typically assume the functions labeling the
leaves, sometimes called input functions, are tractable, mean-
ing that arbitrary integrals and derivatives can be computed
efficiently. We also note that the polynomials considered in
this paper are multilinear, meaning that they are linear in
each variable. For example, the polynomials x1x3 − x2x3

and x1x2x3 + 1 are multilinear, but x2 and x1x
7
2 + 1 are

not. For the remainder of this paper we will use circuit to
mean PC.

3 CUMULATIVE DISTRIBUTION
FUNCTIONS

For real-valued random variables X1, . . . , Xn the cumula-
tive distribution function (CDF) F : Rn → [0, 1] is

F (x1, . . . , xn) = P[X1 ≤ x1, . . . , Xn ≤ xn].

This is a general notion; the CDF exists, e.g., regardless of
whether the variables are discrete, continuous, or otherwise.
If the random variables are all discrete, meaning that they
take values in some countable subset of the reals D ⊂ R,
then the distribution can also be specified by a probability
mass function (PMF) f : Dn → [0, 1] given by

f(x1, . . . , xn) = P[X1 = x1, . . . , Xn = xn].

If instead all the random variables are absolutely continuous,
then there exists a probability density function (PDF) f :
Rn → R≥0 given by

f(x1, . . . , xn) =
∂n

∂x1 . . . ∂xn
F (x1, . . . , xn).

In the following sections we consider three cases. The first
two concern discrete distributions: those over binary random
variables in Section 4, and those over finite discrete vari-
ables in Section 5. We then consider continuous variables in
Section 6.

4 BINARY VARIABLES

We first consider the simplest setting: probability distri-
butions over binary random variables. Let X1, . . . , Xn be
random variables taking values in {0, 1} ⊂ R. Then there
exists a PMF f : {0, 1}n → [0, 1] with f(x1, . . . , xn) =
P[X1 = x1, . . . , Xn = xn]. Moreover, there is a unique
multilinear polynomial p ∈ R[x1, . . . , xn] that computes f
(in the sense that it agrees with f on all inputs in {0, 1}n)
which we will call the PMF polynomial:

p(x1, . . . , xn) =
∑
S⊆[n]

f(vS)
∏
i∈S

xi

∏
i/∈S

(1− xi) (1)

where [n] = {1, . . . , n} and vS ∈ {0, 1}n is the character-
istic vector of S (vS has ith entry 1 if i ∈ S and ith entry

2

X1 X2 f F
0 0 .1 .1
0 1 .4 .5
1 0 .2 .3
1 1 .3 1.0

p(x1, x2) = −.2x1x2 + .1x1 + .3x2 + .1 (Eq. (1))
c(x1, x2) = .3x1x2 + .2x1 + .4x2 + .1 (Eq. (2))

Figure 1: A probability distribution over two binary random
variables. The PMF and CDF functions are specified in the
table, and the corresponding PMF and CDF polynomials p
and c are given below.

0 if i /∈ S). As an example, consider the PMF f with PMF
polynomial p given in Fig. 1.

Like the PMF, the CDF can also be uniquely expressed as
a multilinear polynomial c ∈ R[x1, . . . , xn] which we call
the CDF polynomial:

c(x1, . . . , xn) =
∑
S⊆[n]

F (vS)
∏
i∈S

xi

∏
i/∈S

(1− xi). (2)

Note that p and c can be related simply:

c(x) =
∑
y≤x

p(x) (3)

where y ≤ x is elementwise, meaning that yi ≤ xi for every
i. Again consider the example in Fig. 1 with CDF F and
CDF polynomial c.

To understand how circuits computing PMF and CDF poly-
nomials relate, we recall one additional polynomial repre-
sentation for probability distributions, the probability gener-
ating function (PGF). For binary random variables, this is
the polynomial

g(x1, . . . , xn) =
∑
S⊆[n]

f(vS)
∏
i∈S

xi (4)

where vS ∈ {0, 1}n is the characteristic vector of S. We
now make a perhaps surprising and satisfying observation.

Proposition 1. Fix a probability distribution over binary
random variables X1, . . . , Xn taking values {0, 1} ⊂ R
with CDF polynomial c and PGF g. Then c = g.

Proof. While c and g are polynomials, we abuse nota-
tion and use the same names to refer to the functions

c, g : {0, 1}n → R that they induce. Observe then that

g(x) =
∑
S⊆[n]

f(vS)
∏
i∈S

xi

=
∑
y≤1n

f(y)
∏

i:yi=1

xi

=
∑
y≤x

f(y) = c(x).

Here the first equality follows from definition (Eq. 4), the
second equality follows by identifying sets with their char-
acteristic vectors, the third equality holds because if y > x
(elementwise) then

∏
i∈S xi = 0, and the final equality

follows from Eq. 3. Finally, the equality of the functions
implies equality of the polynomials.

Proposition 1 immediately implies that circuits computing
p (respectively c) can be transformed to circuits computing
c (respectively p) in polynomial time1 by the results of
Broadrick et al. [2024] and Agarwal and Bläser [2024]. In
other words, for binary variables circuits computing PMF
polynomials and circuits computing CDF polynomials are
equally succinct probabilistic models.

Corollary 1. Fix a probability distribution over n binary
random variables with PMF polynomial p and CDF polyno-
mial c. A circuit of size s computing p (respectively c) can
be transformed to a circuit computing c (respectively p) in
time O(ns).

While Broadrick et al. [2024] and Agarwal and Bläser
[2024] already show how to transform a circuit comput-
ing a PGF to a circuit computing a PMF, Proposition 1
allows us to give an alternative proof, which, while essen-
tially equivalent, provides a satisfying explanation for what
the transformation is doing. Specifically, our interpretation
of the PGF as a CDF allows us to view the transformation
as an efficient application of the generalized principle of
inclusion-exclusion. We provide the proof in Appendix A.

5 FINITE DISCRETE VARIABLES

We now consider distributions over finite discrete random
variables, those taking values in some finite set of reals, K ⊂
R. In particular, we focus on the case K = {0, 1, . . . , k−1}
for some k ∈ N. We note that any other finite set of reals
of size k may be bijected with this set, as well as other
categorical or ordinal random variables.

The standard approach in the probabilistic circuits literature
for handling such finite discrete variables is to encode them

1The complexity bound given in Corollary 1 is improved by a
factor of n compared to that presented in [Broadrick et al., 2024];
this improvement follows from the use of more efficient homog-
enization based on polynomial interpolation [Saptharishi, 2015,
Lemma 5.4].

3

with binary indicators, typically using a one-hot encoding.
In particular, a distribution P over K-valued random vari-
ables is mapped to a distribution P′ over binary random
variables such that the two distributions are equivalent up
to an injective mapping ϕ : Kn → {0, 1}kn. That is, for all
x ∈ Kn, we have P(x) = P′(ϕ(x)). While the PMFs agree
up to ϕ, the same cannot be said in general for the CDFs.
While both CDFs are sums over their respective PMFs, the
terms in each of these sums will not in general be the same
up to ϕ (for example, with a one-hot encoding even in the
univariate case, 2 ≤ 3 but (0, 1, 0) ≰ (0, 0, 1)).

However, we observe that there is a simple alternative en-
coding of finite discrete variables with binary variables that
does respect the elementwise less-than-or-equal-to relation.

Definition 2. (Less-Than Encoding) For k ∈ N, the Less-
Than Encoding is the function LTk : {0, 1, . . . , k − 1} →
{0, 1}k given by

LTk(x) :=

[
1x

0k−x

]
with 1n = (1, . . . , 1)⊤ ∈ Rn and 0n = (0, . . . , 0)⊤ ∈ Rn

respectively.

Note that the Less-Than Encoding respects the less-than-
or-equal-to relation in the sense that for any x, y ∈
{0, 1, . . . , k − 1}, x ≤ y if and only if LTk(x) ≤ LTk(y).

We are now free to map a distribution P over K-valued
random variables to a distribution P′ over binary random
variables using the Less-Than Encoding and preserving not
only

p(x) = p′(LTk(x))

but also

c(x) =
∑
y≤x

p(y) =
∑

y≤LTk(x)

p′(y) = c(LTk(x)).

In particular, Corollary 1 can be applied to distributions over
finite discrete variables using this encoding.

6 CONTINUOUS VARIABLES

Lastly we consider the case where all of the variables are
continuous with the distribution admitting a joint density
function. Let X1, . . . , Xn be real-valued random variables
with CDF F : Rn → [0, 1] and PDF f : Rn → R≥0. In this
setting, we show that it is straightforward to efficiently trans-
form between circuits computing the PDF and CDF when
the circuits are smooth and decomposable. Smoothness and
decomposability are standard structural properties of PCs
that enable efficient inference [Darwiche and Marquis, 2002,
Choi et al., 2020]. In order to define them, we use the notion
of the scope of a node v denoted scope(v) which is the set
of all variables appearing in the sub-PC rooted at v.

Definition 3 (Smoothness). A sum node v with children
v1, . . . , vk is smooth if the scope of its children are equal to
its own scope: scope(v) = scope(vi) for i = 1, . . . , k.

Definition 4 (Decomposable). A product node v with chil-
dren v1 and v2 is decomposable if the scope of its children
partition its scope: scope(v) = scope(v1) ∪ scope(v2) and
scope(v1) ∩ scope(v2) = ∅.

It is well known that a smooth and decomposable PC sup-
ports efficient integration, by pushing integrations to the
leaves [Choi et al., 2020]. In particular, the following propo-
sition follows by simply replacing each input distribution
l(x) with a new input distribution lCDF (x) =

∫ x

−∞ l(t)dt.

Proposition 2. A smooth, decomposable PC of size s com-
puting the PDF f can be transformed to a smooth, decom-
posable PC of size s computing the CDF F .

In order to perform a transformation in the other direction
(i.e., from CDF to PDF), decomposability alone suffices.
Intuitively, partial derivatives can be pushed over sum nodes
by linearity and can be pushed over product nodes because
decomposability ensures that one of the two terms in the
product rule is zero. A proof of the following claim is given
in Appendix A.

Proposition 3. A decomposable PC of size s computing the
CDF F can be transformed to a decomposable PC of size s
computing the PDF f .

7 CONCLUSION

We study a basic question: what if a tractable PC computes
a CDF instead of a PMF or PDF? We show that in three
important cases the two models are roughly equivalent. For
distributions over binary random variables, we observe that
the CDF polynomial is exactly the probability generating
function (PGF) of the distribution. This observation allows
us to conclude that PCs computing a PMF polynomial or
CDF polynomial can be transformed to each other in poly-
nomial time, and we were able to give a new explanation
for how a circuit computing the PGF can be transformed
to a circuit computing the PMF. We then showed how to
reduce the finite discrete case to the binary case with a slight
modification to the standard encoding with binary indica-
tors that respects the less-than-or-equal-to relation needed
to compute the CDF. Finally, we showed how the standard
structural properties of smoothness and decomposability suf-
fice in the continuous case to make transformations between
PDFs and CDFs simplify to modifications of the leaves.
We leave open the question of whether similar results hold
for circuit models handling discrete variables over infinite
domains, mixed distributions, or finite discrete variables
with more efficient encodings into binary variables, e.g. like
those used by Cao et al. [2023] for finite discrete variables
or those obtained by Garg et al. [2023] for discretizations of
continuous densities.

4

Acknowledgements

We thank Sanyam Agarwal for referring us to [Saptharishi,
2015].

References

Sanyam Agarwal and Markus Bläser. Probabilistic generat-
ing circuits – demystified, 2024.

Naoki Awaya and Li Ma. Unsupervised tree boosting
for learning probability distributions. arXiv preprint
arXiv:2101.11083, 2021.

Markus Bläser. Not all strongly rayleigh distributions
have small probabilistic generating circuits. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara En-
gelhardt, Sivan Sabato, and Jonathan Scarlett, editors,
Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 2592–2602. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/blaser23a.html.

Oliver Broadrick, Honghua Zhang, and Guy Van den Broeck.
Polynomial semantics of tractable probabilistic circuits.
In 40th Conference on Uncertainty in Artificial Intelli-
gence, 2024.

Richard A Brualdi. Introductory combinatorics. Pearson
Education India, 2004.

William X Cao, Poorva Garg, Ryan Tjoa, Steven Holtzen,
Todd Millstein, and Guy Van den Broeck. Scaling integer
arithmetic in probabilistic programs. In Uncertainty in
Artificial Intelligence, pages 260–270. PMLR, 2023.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck.
Probabilistic circuits: A unifying framework for tractable
probabilistic models. oct 2020. URL http://starai.
cs.ucla.edu/papers/ProbCirc20.pdf.

Adnan Darwiche. A differential approach to inference in
bayesian networks. J. ACM, 50(3):280–305, may 2003.
ISSN 0004-5411. doi: 10.1145/765568.765570. URL
https://doi.org/10.1145/765568.765570.

Adnan Darwiche and Pierre Marquis. A knowledge compi-
lation map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

Poorva Garg, Steven Holtzen, Guy Van den Broeck, and
Todd Millstein. Bit blasting probabilistic programs. arXiv
preprint arXiv:2312.05706, 2023.

James E Gentle. Random number generation and Monte
Carlo methods. Springer, 2003.

Luigi Gresele, Julius Von Kügelgen, Vincent Stimper, Bern-
hard Schölkopf, and Michel Besserve. Independent mech-
anism analysis, a new concept? Advances in neural infor-
mation processing systems, 34:28233–28248, 2021.

Juha Harviainen, Vaidyanathan Peruvemba Ramaswamy,
and Mikko Koivisto. On inference and learning with
probabilistic generating circuits. In The 39th Conference
on Uncertainty in Artificial Intelligence, 2023.

Jim Huang and Nebojsa Jojic. Maximum-likelihood learn-
ing of cumulative distribution functions on graphs. In
Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, pages 342–349.
JMLR Workshop and Conference Proceedings, 2010.

Jim C Huang. Cumulative distribution networks: Inference,
estimation and applications of graphical models for cu-
mulative distribution functions. University of Toronto
Toronto, ON, Canada, 2009.

Aapo Hyvärinen and Petteri Pajunen. Nonlin-
ear independent component analysis: Existence
and uniqueness results. Neural Networks, 12
(3):429–439, 1999. ISSN 0893-6080. doi:
https://doi.org/10.1016/S0893-6080(98)00140-3.
URL https://www.sciencedirect.com/
science/article/pii/S0893608098001403.

Chun Kai Ling, Fei Fang, and J. Zico Kolter. Deep
archimedean copulas. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1535–1545. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/
10eb6500bd1e4a3704818012a1593cc3-
Paper.pdf.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. In 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Work-
shops), pages 689–690, 2011. doi: 10.1109/ICCVW.2011.
6130310.

Ramprasad Saptharishi. A survey of lower bounds in arith-
metic circuit complexity. Github survey, 95, 2015.

Zhongjie Yu, Martin Trapp, and Kristian Kersting. Charac-
teristic circuit. In Proceedings of the 37th Conference on
Neural Information Processing Systems (NeurIPS), 2023.

Honghua Zhang, Brendan Juba, and Guy Van den Broeck.
Probabilistic generating circuits. In International Confer-
ence on Machine Learning, pages 12447–12457. PMLR,
2021.

5

https://proceedings.mlr.press/v202/blaser23a.html
https://proceedings.mlr.press/v202/blaser23a.html
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
https://doi.org/10.1145/765568.765570
https://www.sciencedirect.com/science/article/pii/S0893608098001403
https://www.sciencedirect.com/science/article/pii/S0893608098001403
https://proceedings.neurips.cc/paper_files/paper/2020/file/10eb6500bd1e4a3704818012a1593cc3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/10eb6500bd1e4a3704818012a1593cc3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/10eb6500bd1e4a3704818012a1593cc3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/10eb6500bd1e4a3704818012a1593cc3-Paper.pdf

Probabilistic Circuits for Cumulative Distribution Functions
(Supplementary Material)

Oliver Broadrick1 William Cao1 Benjie Wang1 Martin Trapp2 Guy Van den Broeck1

1Computer Science Dept., University of California , Los Angeles, California, USA
2Department of Computer Science, Aalto University, Espoo, Finland

A PROOFS

We first give an alternative proof that, for distributions over binary random variables, a circuit computing the PGF can be
transformed to a circuit computing the PMF in polynomial time.

We identify vectors x ∈ {0, 1}n with sets Sx = {i : xi = 1} and then view p and c as set functions, p, c : P([n]) → R
where P([n]) is the power set of [n], yielding

c(S) =
∑
T⊆S

p(T) (5)

from Equation 3. We now recall the generalized principle of inclusion-exclusion, which allows ‘inversion’ of set-functions
of the form in Eq. (5) (see e.g. Brualdi [2004]).

Fact 1 (Inclusion-Exclusion). For a finite set S, let f : P(S) → R be an arbitrary function (where P(S) is the power set of
S), and let g : P(S) → R be given by:

g(A) =
∑
B⊆A

f(B).

Then,

f(A) =
∑
B⊆A

(−1)|A|−|B|g(B).

Therefore, applying Fact 1 to Eq. (5), we obtain

p(S) =
∑
T⊆S

(−1)|S|−|T |c(T). (6)

While this successfully expresses p in terms of c, it also introduces a sum over exponentially many terms, and so any direct
construction of a circuit based on this expression yields a circuit of exponential size. However it is possible to use a certain
form of c to compute Eq. (6) in a single forward pass (and to construct a circuit for c).

For any multilinear polynomial

f(x1, . . . , xn) =
∑
S⊆[n]

αS

∏
i∈S

xi

with αS ∈ R, we define the network1 form of f as

f̄(x1, . . . , xn, x̄1, . . . , x̄n) =
∑
S⊆[n]

f(vS)
∏
i∈S

xi

∏
i/∈S

x̄i

1Here the term network refers to such polynomials’ origin in Bayesian Network inference [Darwiche, 2003].

Accepted for the 7th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2024).

where vS ∈ {0, 1}n has xi = 1 for i ∈ S and xi = 0 for i /∈ S. Note that if we have a circuit computing f̄ , then a circuit
computing f can be obtained easily by replacing each x̄i with 1− xi. The following lemma allows us to also efficiently
transform a circuit computing f to a circuit computing f̄ .2

Lemma 1 (Broadrick et al. [2024]). Given a circuit of size s computing multilinear polynomial f , a circuit computing f̄
can be constructed in time O(ns).

Now, back to the problem of transforming a circuit computing c to one computing p, we first apply Lemma 1 to obtain a
circuit computing

c̄(x, x̄) =
∑
S⊆[n]

c(vS)
∏
i∈S

xi

∏
i/∈S

x̄i. (7)

We now observe that we can compute p(x) using Eq. (6) by evaluating c̄(y, ȳ) for a carefully crafted input (y, ȳ) with entries
in {−1, 0, 1} (not just the typical {0, 1}). In particular, we set

(yi, ȳi) =

{
(yi, ȳi) = (0, 1) if xi = 0

(yi, ȳi) = (1,−1) if xi = 1.
(8)

Already this provides a way to perform inference (i.e. to compute arbitrary marginal probabilities in linear time) given a
circuit computing c̄. We can also construct a new circuit for p by forming the circuit:

c̄(x1, . . . , xn, 1− 2x1, . . . , 1− 2xn).

To see that this is correct, observe

c̄(x1, . . . , xn,1− 2x1, . . . , 1− 2xn)

=
∑

T⊆[n]

c(xT)
∏
i∈T

xi

∏
i/∈T

(1− 2xi)

=
∑
T⊆Sx

c(xT)
∏
i/∈T

(1− 2xi)

=
∑
T⊆Sx

c(xT)(−1)
∑

i/∈T xi

=
∑
T⊆Sx

c(xT)(−1)|Sx|−|T |

= p(x)

where Sx is the set with characteristic vector x = (x1, . . . , xn). Here the equalities hold for x ∈ {0, 1}n for the following
reasons. The first equality is from definition; the second equality holds because for any T ⊃ Sx, there is some i ∈ T such
that xi = 0, and so

∏
i∈T xi = 0; the third equality holds because 1 − 2xi = (−1)xi for xi ∈ {0, 1}; the final equality

holds because T ⊆ Sx.

We now prove Proposition 3.

Proof. Given a decomposable PC computing F , we construct a decomposable PC for f inductively. For a sum node with
P (x) =

∑
i Pi(x), we have

∂n

∂x1 . . . ∂xn
P (x) =

∑
i

∂n

∂x1 . . . ∂xn
Pi(x)

by linearity of derivatives. For a product node3 with P (x) = P1(x)P2(x), we assume WLOG that xn is in the scope of P2

2The complexity bound given in Lemma 1 is improved by a factor of n compared to that presented in [Broadrick et al., 2024]; this
improvement follows from the use of more efficient homogenization based on polynomial interpolation [Saptharishi, 2015, Lemma 5.4].

3We assume product nodes have two children; this can be enforced trivially with minimal effect on circuit size.

7

(and therefore not P1, by decomposability). Then for any i we have

∂

∂xi
P (x) =

∂

∂xi
[P1(x)P2(x)]

= P1(x)

(
∂

∂xi
P2(x)

)
+

(
∂

∂xi
P1(x)

)
P2(x)

= P1(x)
∂

∂xi
P2(x)

where the final equality follows as the partial derivative
(

∂
∂xi

P1(x)
)

is zero because xi is not in the scope of P1. In such a
way, we partition the partial derivatives between the children P1, P2. If P is a leaf, we assume the partial derivative can be
computed efficiently. Therefore taking a partial derivative of a circuit produces a circuit of the same size, and all n partial
derivatives can be taken while maintaining the size of the circuit.

8

	Introduction
	Background on circuits
	Cumulative Distribution Functions
	Binary Variables
	Finite Discrete Variables
	Continuous Variables
	Conclusion
	Proofs

