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Abstract

Probabilistic circuits compute multilinear polyno-
mials that represent probability distributions. They
are tractable models that support efficient marginal
inference. However, various polynomial semantics
have been considered in the literature (e.g., net-
work polynomials, likelihood polynomials, gener-
ating functions, Fourier transforms, and character-
istic polynomials). The relationships between these
polynomial encodings of distributions is largely un-
known. In this paper, we prove that for binary distri-
butions, each of these probabilistic circuit models
is equivalent in the sense that any circuit for one
of them can be transformed into a circuit for any
of the others with only a polynomial increase in
size. They are therefore all tractable for marginal
inference on the same class of distributions. Fi-
nally, we explore the natural extension of one such
polynomial semantics, called probabilistic generat-
ing circuits, to categorical random variables, and
establish that marginal inference becomes #P-hard.

1 INTRODUCTION

Modeling probability distributions in a way that allows effi-
cient probabilistic inference (e.g. computing marginal prob-
abilities) is a key challenge in machine learning. Decades
of research towards meeting this challenge have led to
the development of families of tractable models includ-
ing bounded-treewidth graphical models such as hidden
Markov models [Rabiner and Juang, 1986] and (mixtures
of) Chow-Liu Trees [Chow and Liu, 1968, Meila and Jordan,
2000], determinantal point processes [Kulesza and Taskar,
2012], and various families of probabilistic circuits (PCs)
such as sum-product networks [Poon and Domingos, 2011,
Peharz et al., 2018] and probabilistic sentential decision
diagrams [Kisa et al., 2014].

As a unifying representation for all aforementioned models,
probabilistic circuits (PCs) compactly represent polynomi-
als encoding probability distributions (Fig. 2). The most
commonly studied classes of PCs, for example, are com-
pact representations of network polynomials [Darwiche,
2003], which are probability mass functions. A majority
of prior works on PCs representing network polynomi-
als, as well as the more recent PCs representing charac-
teristic functions [Yu et al., 2023], assume that PCs need
to satisfy a property called decomposability1 [Darwiche
and Marquis, 2002] for marginals to be tractable. How-
ever, for one class of PCs called probabilistic generat-
ing circuits (PGCs) [Zhang et al., 2021, Harviainen et al.,
2023], there are no such structural assumptions, making
them strictly more expressively efficient than decomposable
PCs [Martens and Medabalimi, 2015]. PGCs are compact
representations of probability generating functions (gener-
ating polynomials for short), and the only requirement for
tractable marginals is that the generating polynomials being
represented are multilinear.

From this perspective, we study the circuit representations
for multilinear polynomials of different semantics, and find
that they all are tractable for marginal probabilities regard-
less of the circuit structure. Moreover, we show that their
circuit representations are all equally expressive-efficient,
regardless of their choice of polynomial semantics.

In this work, in addition to the network polynomials p(x, x̄)
and generating polynomials g(x), mentioned above, we also
consider likelihood polynomials p(x) [Roth and Samdani,
2009] and their Fourier transforms p̂(x), which are also
known as characteristic functions [Yu et al., 2023]. We show
that circuits computing these four classes of polynomials
are all equally expressive-efficient (Sec. 3, 4, and 5). In par-
ticular, we show that given a circuit computing any of these
polynomials, we can transform it to a circuit for any of the
others in polynomial time with respect to the size of the
original circuit. Figure 1 shows a diagram of the transforma-

1Also known as syntactic multilinearity in circuit complexity
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Figure 1: Polynomial time circuit transformations between polynomial semantics including: likelihood p(x), network
p(x, x̄), generating g(x), and Fourier p̂(x) polynomials. Previously known transformations are displayed on the left; (2) is
given in Zhang et al. [2021], and (3) is implicit in Roth and Samdani [2009]. The results in this paper are shown on the
right. Edges labeled by * correspond to transformations which map circuits of size s to circuits of size O(n2s); other edges
correspond to transformations which map circuits of size s to circuits of size O(s).

tions we present. Notably, for the likelihood polynomials,
we also propose the first tractable inference algorithm for
their circuit representations. Our transformation assumes no
structural properties of circuits and in Section 6, we show
that some of the transformations can be simplified if we also
assume decomposability.

In Section 7, we extend our discussion to non-multilinear
polynomials. Specifically, PGCs represent multilinear gen-
erating polynomials for modeling binary random variables.
We propose to generalize them to categorical PGCs such
that the non-multilinear generating polynomials they repre-
sent have well-known categorical semantics. Unfortunately,
we show that inference in a categorical PGC with n random
variables and k > 3 categories is #P-hard, and they are
therefore not tractable models.

2 BACKGROUND

We use Pr to denote a probability distribution on n binary
random variables X = {X1, X2, . . . , Xn}, each taking
values in {0, 1}. Let [n] = {1, 2, . . . , n}. For any S ⊆ [n],
let xS ∈ {0, 1}n denote the assignment Xi = 1 for i ∈ S
and Xi = 0 for i /∈ S. We study polynomials in variables
x1, . . . , xn which we often abbreviate to x. A polynomial
is multilinear if it is linear in every variable.

In this paper we consider multilinear polynomials as repre-
sentations of probability distributions. To compactly repre-
sent polynomials, we use arithmetic circuits, a fundamental
object of study in computer science [Shpilka and Yehu-
dayoff, 2010] which have proven useful for representing
tractable probabilistic models.

Definition 1. An arithmetic circuit (AC) is a directed acyclic
graph consisting of three types of nodes:

1. Sum nodes ⊕ with weighted edges to children;

2. Product nodes ⊗ with unweighted edges to children;

3. Leaf nodes, which are variables in {x1, . . . , xn} or
constants in R.

An AC has one node of in-degree 0, and we refer to it as the
root. The size of an AC is the number of edges in it.

Each node in an AC represents a polynomial: (i) each leaf
represents the polynomial xi or a constant, (ii) each sum
node represents the weighted sum of the polynomials repre-
sented by its children, and (iii) each product node represents
the product of the polynomials represented by its children.
The polynomial represented by an AC is the polynomial
represented by its root. We note that the standard definition
of AC in the circuit complexity literature uses unweighted
sums, but the models are equivalent up to constant factors.
For the remainder of this paper we use the term circuit to
mean arithmetic circuit.

Note that when we say that two polynomials/circuits are
the same, we do not mean that they agree on all inputs in
{0, 1}n but that they agree on all real inputs in Rn; the
polynomials are equivalent elements in the ring of polyno-
mials R[x1, . . . , xn].

3 NETWORK AND LIKELIHOOD
POLYNOMIALS

There are various polynomials containing all the information
of a binary distribution Pr, in the sense that any value Pr(x)
can be recovered from the polynomial alone. It is known that
efficient circuit representations of some such polynomials
still allow tractable marginal inference, but a unified analysis
of the various polynomial representations is lacking. In this
section, we begin with the most studied such polynomial,
the network polynomial, and establish its connections to the
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Figure 2: An example transforming a circuit representing a likelihood polynomial p(x) = 0.08x1x2+0.16x1+0.12x2+0.09
to a circuit representing a network polynomial. First, (b) gadgets using division nodes are introduced at the leaves (as well
as a multiplying factor) to obtain a rational function equivalent to the network polynomial. Then (c:top) all divisions are
pushed to a single division node at the root so p(x, x̄) = A/B, and (c:bottom) a sum over necessary homogeneous parts of
A and B is formed.

more natural – yet still, as we show, tractable – likelihood
polynomial.

3.1 NETWORK POLYNOMIALS

Darwiche [2003] showed that Bayesian Networks can be
compiled to circuits computing a certain polynomial repre-
sentation of their distribution which he called the network
polynomial (also see [Castillo et al., 1995]). The network
polynomial of binary probability distribution Pr is

p(x1, . . . , xn, x̄1, . . . , x̄n) =
∑
S⊆[n]

Pr(xS)
∏
i∈S

xi

∏
i/∈S

x̄i.

(1)
Significant work towards learning and applying circuits
computing this polynomial has since been developed [Poon
and Domingos, 2011, Peharz et al., 2020, Liu et al., 2021].
In particular, this is the canonical polynomial computed
by circuits in the growing literature on Probabilistic Cir-
cuits (PC) [Choi et al., 2020]. The key feature of circuits
computing network polynomials is that they enable linear
time (and very simple!) marginal inference. We note that
while algorithms for marginalization are typically given for
smooth and decomposable circuits, the following Proposi-
tion holds for circuits of any structure which compute a
network polynomial.

Proposition 1. Computing marginals on a circuit of size
s representing a network polynomial takes O(s) time. For
the random variable assignment Xi = 1, set xi = 1 and
x̄i = 0; for Xi = 0, set xi = 0 and x̄i = 1; marginalize Xi

by setting xi = x̄i = 1.

The network polynomial is a polynomial with very specific

structure. First, the network polynomial is multilinear. Sec-
ond, every monomial with a nonzero coefficient contains
xi or x̄i for every i ∈ {1, 2, . . . , n}. However, we wonder
whether the structure of the monomials with variables xi

and x̄i is necessary for marginal inference. We next consider
a definition which does not use these x̄i variables but, as we
show, remains tractable.

3.2 LIKELIHOOD POLYNOMIALS

Roth and Samdani [2009] considered perhaps the simplest
polynomial representation of Pr, that which directly com-
putes Pr using variables x1, . . . , xn. Such a polynomial
is obtained from a network polynomial by substituting
x̄i = 1− xi (transformation 2 in Figure 1). We call this the
likelihood polynomial:

p(x1, . . . , xn) =
∑
S⊆[n]

Pr(xS)
∏
i∈S

xi

∏
i/∈S

(1− xi). (2)

While conceptually simple, it is not clear how or whether it
is possible to efficiently compute marginals given a circuit
representation of the likelihood polynomial. In particular,
Roth and Samdani [2009] considered only “flat” represen-
tations of the likelihood polynomial, where all monomials
with nonzero coefficients and their coefficients are stored
explicitly. While marginal inference is linear in the size
of the flat representation, there is an exponential gap in
succinctness between circuits and flat representations.

We note that both network polynomials and likelihood poly-
nomials are multilinear. Moreover, the standard structural
property decomposability in the tractable circuits literature
implies that the polynomial computed by a circuit is multi-
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linear. Indeed, inference on circuits that agree with Pr on all
inputs in {0, 1}n becomes intractable without multilinearity.
For example, if we just relax the restriction of multilinearity
to circuits computing polynomials that are quadratic in each
variable, marginal inference already becomes #P-hard (e.g.
implicit in the proof of Theorem 2 in Khosravi et al. [2019]).

We show that given a circuit computing a likelihood polyno-
mial, there is still a linear time marginal inference algorithm.

Proposition 2. Marginal probabilities on a circuit of size
s representing a likelihood polynomial can be computed in
time O(s).

By definition, a circuit representing a likelihood polynomial
computes

p(x1, . . . , xn) =
∑
S⊆[n]

Pr(xS)
∏
i∈S

xi

∏
i/∈S

(1− xi). (3)

We observe that setting xi = x̄i = 1 in the following expres-
sion2 is equivalent to marginalizing in a network polynomial
as in Proposition 1.

n∏
i=1

(xi + x̄i) · p
(

x1

x1 + x̄1
, . . . ,

xn

xn + x̄n

)

=

n∏
i=1

(xi + x̄i)
∑
S⊆[n]

Pr(xs)
∏
i∈S

xi

xi + x̄i

∏
i/∈S

(
1− xi

xi + x̄i

)
=
∑
S⊆[n]

Pr(xs)
∏
i∈S

xi

∏
i/∈S

x̄i

= p(x, x̄).

In fact, this expression naturally corresponds to a circuit
computing the network polynomial using division nodes;
replace inputs xi with xi/(xi + x̄i) and multiply the whole
circuit by

∏n
i=1(xi+x̄i). However, the probabilistic circuits

literature does not typically use division nodes, and avail-
able software libraries and known algorithms would need
to be reconsidered to use division nodes, not to mention
possible divide-by-zero problems – which we will in fact
see arise in Section 4. This leads to the question, can we
find a circuit computing an equivalent polynomial without
use of division nodes? Classic work in the circuit complex-
ity theory literature by Strassen [1973] provides a positive
answer.

Theorem 1 (Strassen). If C is an arithmetic circuit with
division nodes of size s, computing polynomial p of degree d
over an infinite field, then there exists an arithmetic circuit
C ′ of size poly(s, d, n) that computes p using only addition
and multiplication nodes.

2Readers familiar with the weighted model counting task on
decomposable logic circuits might recognize a neutral labeling
function in this expression [Kimmig et al., 2017].

In particular, we have the following Theorem, which corre-
sponds to transformation 4 in Figure 1.

Theorem 2. Let Pr be a probability distribution on n binary
random variables. Then a circuit of size s computing the
likelihood polynomial for Pr can be transformed to a circuit
of size O(n2s) computing the network polynomial for Pr.

To illustrate the algorithm, we consider the running example
in Figure 2. Figure 2a shows the initial circuit that repre-
sents the likelihood polynomial. Figure 2b shows the cir-
cuit computing the expression with division nodes. To re-
move division nodes, the first observation is that all division
nodes can be moved ‘up’ to a single division at the output
node using the identities (a/b) × (c/d) = (ac)/(bd) and
(a/b) + (c/d) = (ad+ bc)/(bd), as visualized in Figure 2c.
At this point we have the network polynomial written as a
ratio of two polynomials, p(x, x̄) = A(x, x̄)/B(x, x̄). With-
out loss of generality we assume B has constant term one,
i.e. B(0, 0, . . . , 0) = 1.3

One additional result from the circuit complexity theory
literature is needed at this point; for any circuit f of size s
and degree d, a circuit of size O(d2s) can be constructed
(with d + 1 outputs) computing H0[f ], H1[f ], . . . ,Hd[f ]
where Hi[f ] has degree i and f =

∑
i Hi[f ] [Shpilka and

Yehudayoff, 2010]. This process is called homogenization,
and the Hi[f ]’s the homogeneous parts of f .

The final division node can now be eliminated by use of the
common polynomial identity a

1−r =
∑∞

j=0 ar
j . We have

p(x, x̄) =
A

B
=

A

1− (1−B)
=

∞∑
j=0

A(1−B)j . (4)

In particular, these equalities hold for the homogeneous
parts of p(x, x̄). And, because B(0, . . . , 0) = 1, we know
that 1 − B has constant term zero, and so all monomials
in (1−B)j have degree at least j. Since we know that the
network polynomial p(x, x̄) has all terms of degree exactly
n, we only need to compute

Hn[p(x, x̄)] =

n∑
j=0

Hn[A(1−B)j ],

as illustrated by Figure 2c. In particular, a single circuit com-
puting (1−B)j for j ∈ {0, 1 . . . , n} can be homogenized
in addition to homogenizing A, to compute p(x, x̄) with
size O(n2s).

3By a standard argument, if B does not already have constant
term 1, then its inputs can be translated and the whole function
scaled accordingly to achieve this property.
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4 GENERATING POLYNOMIALS

So far we have considered circuits that directly compute
a distribution. However, there are other well known poly-
nomial representations of probability distributions which
have been shown as promising representations for tractable
probabilistic modeling. Zhang et al. [2021] consider cir-
cuits computing the Probability Generating Function of a
distribution. Generating Functions are well studied in math-
ematics as theoretical objects [Wilf, 2005], but have recently
been identified as useful data structures [Zhang et al., 2021,
Klinkenberg et al., 2023, Zaiser et al., 2023]. The generating
polynomial for probability distribution Pr is

g(x1, . . . , xn) =
∑
S⊆[n]

Pr(xs)
∏
i∈S

xi. (5)

Zhang et al. [2021] call circuits computing generating poly-
nomials Probabilistic Generating Circuits (PGCs) and show
that marginal inference on PGCs is tractable. For a PGC of
size s in n variables, they provide an O(sn log n log log n)
marginal inference algorithm which has been improved by
Harviainen et al. [2023] to O(ns). It is also noted by Zhang
et al. [2021] that circuits computing network polynomials
can be transformed to PGCs simply by replacing x̄i’s by 1,
and so any distribution with a polynomial-size circuit com-
puting its network polynomial also has a polynomial-size
PGC; this is transformation 2 in Figure 1. On the other hand,
they show that there are distributions with polynomial-size
PGCs but for which any decomposable circuit computing
the network polynomial using only positive weights has ex-
ponential size (and additional PGC lower bounds are known
Bläser [2023]). It is left as an open question whether this sep-
aration still holds for circuits with unrestricted weights. We
settle this question with a negative answer. Using a method
similar to that in Section 3, we show that given a PGC, one
can find a circuit computing the network polynomial with
a polynomial increase in size; this is transformation 1 in
Figure 1.

Theorem 3. Let Pr be a probability distribution on n binary
random variables. Then a circuit of size s computing the
probability generating function for Pr can be transformed to
a circuit of size O(n2s) computing the network polynomial
for Pr.

Proof. We obtain the desired circuit by first constructing a

circuit that computes p(x, x̄) using division nodes. Observe(
n∏

i=1

x̄i

)
g

(
x1

x̄1
,
x2

x̄2
, . . . ,

xn

x̄n

)

=

(
n∏

i=1

x̄i

) ∑
S⊆[n]

Pr(xS)
∏
i∈S

xi

x̄i

=
∑
S⊆[n]

Pr(xS)
∏
i∈S

xi

∏
i/∈S

x̄i

= p(x1, . . . , xn, x̄1, . . . , x̄n)

The degree of p(x, x̄) is n, and so using Theorem 1 as
in Section 3, there is a circuit computing p(x, x̄) without
division nodes of size O(n2s).

We note the similarity of the proof of Theorem 2 to that
of Theorem 3. They both involve constructing a circuit to
represent p(x, x̄) initially using division nodes and then
removing the division nodes. We also note the crucial differ-
ence between the proofs; in the construction for Theorem 3,
the circuit with division nodes can not be used to evalu-
ate p(x, x̄) directly because it would require division by
zero whenever x̄i = 0 for any i ∈ [n]. Therefore the abil-
ity to remove divisions while maintaining equivalence of
the polynomial computed is essential for this transforma-
tion to be meaningful. As one immediate consequence, this
implies the existence of polynomial size PCs computing
network polynomials for DPPs since Zhang et al. [2021]
showed the existence of polynomial size PGCs for DPPs.
Another practical benefit is that rather than using a bespoke
polynomial-interpolation algorithm for inference in PGCs,
there is a simple feedforward (and easily implemented, on a
GPU for example) method of inference for PGCs after the
transformation has been performed.

5 FOURIER TRANSFORMS

Fourier analysis involves representing functions in the fre-
quency domain and is ubiquitous across math and com-
puter science. Yu et al. [2023] show that circuits repre-
senting Fourier transforms (called Characteristic Functions
in Probability Theory) can improve learning in a mixed
discrete-continuous setting while still supporting marginal
inference when the circuit is smooth and decomposable
(see Section 6 for discussion of these properties). Xue et al.
[2016] show that Fourier representations can improve ap-
proximate inference in the binary setting too. The Fourier
transform [O’Donnell, 2014] of pseudoboolean function
p : {0, 1}n → R is

p̂(t) = 2−n
∑

x∈{0,1}n

p(x)(−1)⟨t,x⟩. (6)

It is convenient that in this binary case, p̂ can also be simply
written as a multilinear polynomial (note that the equality
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holds on its domain {0, 1}n):

p̂(t1, . . . , tn) = 2−n
∑
S⊆[n]

p(xS)
∏
i∈S

(1− 2ti). (7)

For the rest of the paper we use p̂ to refer to this multilinear
polynomial. We note that Fourier analysis of binary func-
tions is a rich subject in its own right and refer the reader to
O’Donnell [2014].

While there is no obvious connection between network
polynomials, generating functions, and Fourier transforms,
we show that in fact they are closely related. This rela-
tion hinges on switching between the domains {0, 1}n and
{−1, 1}n. In particular, we define for any polynomial f its
counterpart f−1,1 as follows:

f−1,1(x1, . . . , xn) = f

(
1− x1

2
, . . . ,

1− xn

2

)
, (8)

also a multilinear polynomial. Similarly, observe that we
can write

f(x1, . . . , xn) = f−1,1 (1− 2x1, . . . , 1− 2xn) . (9)

Note that f and f−1,1 compute the same function on the
respective domains {0, 1}n and {−1, 1}n up to the bijection
ϕ : {0, 1} → {−1, 1} given by ϕ(b) = (−1)b applied
bitwise. In particular, Equations 8 and 9 can be applied to
circuits with modifications at only the leaves, giving the
following lemma.

Lemma 1. A circuit of size s computing polynomial f (resp.
f−1,1) can be transformed to a circuit of size O(s) comput-
ing f−1,1 (resp. f ).

We now make a simple observation that connects Fourier
transforms with generating polynomials; up to a constant
factor, generating polynomials are Fourier transforms, writ-
ten on the domain {−1, 1}n.

Proposition 3. Let Pr : {0, 1}n → R be a probability distri-
bution with generating polynomial g and Fourier polynomial
p̂−1,1(x) on the domain {−1, 1}. Then g(x) = 2np̂−1,1(x).

Proof.

g(x) =
∑
S⊆[n]

Pr(Xs)
∏
i∈S

xi

=
∑
S⊆[n]

Pr(XS)
∏
i∈S

(
1− 2

(
1− x1

2

))
= 2np̂−1,1(x).

Using only the ability to switch between the domains
{0, 1}n and {−1, 1}n and Proposition 3, we now have trans-
formations 11 and 12 in Figure 1.

Theorem 4. Let Pr be a probability distribution on n binary
random variables. Then a circuit of size s computing the
generating polynomial g for Pr (resp. p̂) can be transformed
to a circuit of size O(s) representing the Fourier transform
p̂ for Pr (resp. g).

Proof. Proposition 3 and Lemma 1.

Having observed this connection between generating poly-
nomials and Fourier polynomials, we have completed a
path between p and p̂ in Figure 1, i.e. a polynomial time
transformation between circuits computing them. However,
we point out that this path more naturally corresponds to
computing the inverse Fourier transform, and there is a sym-
metric set of transformations that compute p̂ from p in a
more natural way. In particular, it is more common to define
the binary Fourier transform p̂ of p in terms of its Fourier
expansion:

p(x) =
∑
S⊆[n]

p̂(xS)(−1)
∑

i∈S xi

=
∑
S⊆[n]

p̂(xS)
∏
i∈S

(1− 2xi)

where the last equality holds for inputs in {0, 1}n. When
written in this form, it becomes clear that p̂ computes the co-
efficients of p when written as a linear combination of parity
functions (specifically, p̂(xS) computes the coefficient of
the parity function

∏
i∈S(1− 2xi)). Note the equivalence

of the functions
∏

i∈S(1− 2xi) to the monomials
∏

i∈S xi

on the respective domains {0, 1}n and {−1, 1}n, and then
we have that p̂(xS) simply computes the coefficient of the
monomial

∏
i∈S xi in p−1,1. Thus, we can find p̂ from p

by first transforming p to p−1,1 using Lemma 1 (transfor-
mations 5 and 7 in Figure 1). Then to obtain a polynomial
which computes the coefficients of p−1,1 we use the equiva-
lent transformation from generating polynomials to network
polynomials to obtain polynomial p̂−1,1(x, x̄), and finally
substituting x̄ = 1 − x we obtain p̂(x); transformations 7
and 9 in Figure 1. Moreover, the reverse transforms can be
obtained by the same methods in the ‘upper half’ of Figure 1
as well.

Having now completed the transformations presented in Fig-
ure 1, we ask how they simplify in the presence of structural
constraints common in the tractable circuits literature.

6 DECOMPOSABILITY

So far we make no assumptions on the structural properties
of PCs; in this section, we consider the special case where
the PC is decomposable [Darwiche and Marquis, 2002],
which is a common assumption that guarantees tractable
marginals, and we show that in this case some of the trans-
formations described before can be simplified. We use the
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scope of a node to refer to the set of all i such that variables
xi or x̄i appear as inputs among its descendants and itself.

Definition 2 (Decomposability). A product node is decom-
posable if its children have disjoint scopes. A circuit is
decomposable if all its product nodes are decomposable.

Definition 3 (Smoothness). A sum node in indeterminates
x and x̄ is smooth if its children have equal scope. A circuit
is smooth if all of its sum nodes are smooth.

Decomposability is a very common property because it
guarantees multilinearity and, when paired with smoothness,
guarantees tractable marginal inference by computing a
network polynomial. In particular, it is well known that if a
circuit is smooth and decomposable, it computes a network
polynomial [Poon and Domingos, 2011, Choi et al., 2020].
We note that if a circuit is decomposable, then it can be made
smooth efficiently (increasing the size at most by a linear
factor Choi et al. [2020], and less for certain decomposable
structures Shih et al. [2019]).

We now show how the transformations used for Theo-
rems 2,3,4 can be simplified and improved for decompos-
able circuits. First, we show that in decomposable circuits
Fourier transforms correspond to trivial modifications at
only the leaves.

Theorem 5. A decomposable circuit of size s representing a
likelihood polynomial p can be transformed to a decompos-
able circuit of size O(s) representing a Fourier transform p̂
by only modifications to the leaves.

Sketch. A circuit representing p̂ can be constructed with
modifications pushed entirely to the leaves inductively. Es-
sentially, decomposability allows Fourier transforms to be
pushed to the children of each product node; transforms
are also straightforwardly pushed to children of sum nodes.
Finally, leaf nodes are univariate and so can be transformed
trivially.

Transformations 1 and 4 in Figure 1 can be simplified when
the initial circuits are decomposable; the decomposability
is preserved during the transformation, and the worst-case
increase in size is lowered to O(ns). First, a decomposable
circuit of size s computing a likelihood polynomial p can
be transformed to decomposable circuit of size O(ns) com-
puting p(x, x̄). We note that this problem is exactly that of
smoothing [Shih et al., 2019, Choi et al., 2020] and so the
following lemma is included for completeness but is already
known. In particular, this shows how Theorem 2 can be
viewed as a generalization of smoothing to circuits without
decomposability.

Lemma 2. A decomposable circuit of size s computing like-
lihood polynomial p(x) can be transformed to a decompos-
able circuit of size O(ns) computing network polynomial
p(x, x̄).

Next, we also have that a decomposable circuit of size s
computing a generating polynomial g can be transformed to
decomposable circuit of size O(ns) computing p(x, x̄). This
problem, while not smoothing, can be solved by a similar
approach; rather than smoothing with gadgets computing
xi + x̄i, simply use x̄i.

Lemma 3. A decomposable circuit of size s computing gen-
erating polynomial g(x) can be transformed to a decompos-
able circuit of size O(ns) computing network polynomial
p(x, x̄).

We note that Lemmas 2 and 3 hold for the symmetric trans-
formations as described in Section 5; in particular, for de-
composable versions of transformations 7 and 10 in Fig-
ure 1.

7 CATEGORICAL DISTRIBUTIONS

So far we have considered binary probability distributions,
functions of the form Pr : {0, 1}n → R. Of course, cate-
gorical distributions of the form Pr : Sn → R for arbitrary
finite set S are also of interest. In the PC literature, cate-
gorical distributions are typically encoded as binary distri-
butions using binary indicator variables [Darwiche, 2003,
Poon and Domingos, 2011, Choi et al., 2020]. Indeed, the
polynomials in this paper have no other straightforward
and potentially tractable extension to the categorical setting,
with one exception: generating polynomials. In fact, the
generating polynomials considered in Zhang et al. [2021]
are a restriction to the binary case of the following more
general and standard definition. Let Pr : Kn → R be a
probability distribution for K = {0, 1, 2, . . . , k − 1} where
we call the elements of {0, 1, 2, . . . , k−1} categories. Then
the probability generating polynomial of Pr is

g(x) =
∑

(d1,d2,...,dn)∈Kn

Pr(d1, . . . , dn)x
d1
1 xd2

2 · · ·xdn
n .

(10)
It is then natural to consider a categorical PGC as a circuit
computing the generating function of a categorical distribu-
tion with more than two categories. This begs the question,
are categorical PGCs a tractable model? To this, we give a
negative answer. In fact, not only are marginals hard, but
even likelihoods.

Theorem 6. Computing likelihoods on a categorical PGC
is #P-hard for k > 3 categories.

We prove Theorem 6 by a reduction from the {0, 1}-
Permanent to categorical PGC inference. The classic work
of Valiant [1979b] shows that computing the permanent of
matrices with entries in {0, 1} is #P-hard. The permanent
of a matrix M is

perM =
∑
σ∈Sn

n∏
i=1

Mi,σ(i)
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0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0

→


0 1 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 1 0 0


Figure 3: An example of the permanent-preserving oper-
ation used to make M sparse. The new row and column
are shaded in blue. The newly-added nonzero entries are
singly-underlined. The nonzero entries that moved from
their original column to the new one are doubly-underlined.

where Sn is the symmetric group of order n.

Our reduction proceeds in two steps. Let M ∈ {0, 1}n×n.
We first find a slightly larger but sparse matrix M ′ such that
perM = perM ′. Then, we use a polynomial construction
from Valiant [1979a], Koiran and Perifel [2007] to obtain
a categorical PGC for which computing a single likelihood
would equivallently compute perM .

1. Let M ∈ {0, 1}n×n. Suppose the ith column of M
contains more than three nonzero entries. Insert a new
row and column between the original i and (i+ 1)th
rows and columns respectively, setting their (i+ 1)th
entries (i.e. their shared value on the main diagonal)
to 1. Also set the ith entry of the new row to 1. Now
select any two of the original nonzero entries of the ith
column and move them to the new (i + 1)th column
(i.e. if they have index j and j′ in column i, set Mj,i =
Mj′,i = 0 and Mj,i+1 = Mj′,i+1 = 1). Call the result-
ing matrix M ′ and observe that perM = perM ′. Fig-
ure 3 gives an example of this transformation. Repeat
this permanent-preserving operation until all columns
contain at most three nonzero entries, which requires
at most n2 repetitions.

2. Let n′ be the new size of M ′ (i.e. M ′ ∈ {0, 1}n′×n′
).

We now simply construct a circuit g(x) computing

n′∏
i=1

n′∑
j=1

M ′
i,jxj . (11)

Observe that the coefficient of the the monomial∏n′

i=1 xi in g(x) is exactly perM ′ = perM . Thus with
g(x) interpreted as a categorical PGC, the likelihood
query with X1 = X2 = . . . = Xn′ = 1 computes
perM .

This motivates the need to research tractable categorical
distributions, e.g. possibly in the direction suggested by Cao
et al. [2023]. In particular, this calls for careful consideration
of the use of generating functions over categorical variables,
which are not tractable models in general.

8 CONCLUSION

We studied tractable probabilistic circuits computing vari-
ous polynomial representations of probability distributions.
For binary probability distributions we show that a num-
ber of previously studied polynomials have equivalently
expressive-efficient circuit representations. Among circuits
computing network, likelihood, generating, and Fourier
polynomials, all support tractable marginal inference, and,
given a circuit computing any one polynomial, a circuit
computing any other can be obtained with at most a poly-
nomial increase in size. This establishes a relationship be-
tween several previously-independent marginal inference
algorithms, and establishes one novel marginal inference
algorithm, namely for circuits computing likelihood poly-
nomials. These results connect well-studied mathematical
objects like generating functions and Fourier transforms
in their forms as tractable probabilistic circuits, opening
up potential future research, for example leveraging theory
developed in one semantics and translating it to another,
or learning in one representation space and transforming
to another.
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A PROOFS

Proof of Lemma 5.

Proof. We construct p̂ inductively as follows. For a product node, we have p̂(t) = p̂0(t0)p̂1(t1), and so

p(x) =
∑

t∈{0,1}n

p̂(t)(−1)⟨t,x⟩

=
∑

t∈{0,1}n

p̂0(t0)p̂1(t1)(−1)⟨t,x⟩

=

 ∑
t0∈{0,1}n

p̂0(t0)(−1)⟨t0,x0⟩

 ·

 ∑
t1∈{0,1}n

p̂1(t1)(−1)⟨t1,x1⟩


= p0(x0)p1(x1)

where the first equality follows from definition, the second from the hypothesis, the third from algebra, and the final from
definition. For a sum node, we have p̂(t) =

∑
i wip̂i(t), and so

p(x) =
∑

t∈{0,1}n

p̂(t)(−1)⟨t,x⟩

=
∑

t∈{0,1}n

(∑
i

wip̂i(t)

)
(−1)⟨t,x⟩

=
∑
i

wi

∑
t∈{0,1}n

p̂i(t)(−1)⟨t,x⟩

=
∑
i

wipi(x)

where the equalities follow, respectively, from definition, assumption, commutativity of addition, and definition.

For leaf nodes, it suffices to consider only univariate leaves that are children of sums; for any leaf a child of a product node,
add a sum node with weight 1 between them. Then, for a univariate child of a sum node with scope the singleton {i}, we
have either p(xi) = c, and so

p̂(ti) =
∑
S⊆[n]

p(xS)
∏
i∈S

(1− 2ti)

= 2−n(c+ c(1− 2xi)) = 2−n+1c(1− xi)

or p(xi) = xi, in which case
p̂(ti) =

∑
S⊆[n]

p(xS)
∏
i∈S

(1− 2ti) = 2−n(1− 2xi). (12)
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