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Abstract

We design a predictive layer for structured-output prediction (SOP) that can be
plugged into any neural network guaranteeing its predictions are consistent with a
set of predefined symbolic constraints. Our Semantic Probabilistic Layer (SPL)
can model intricate correlations, and hard constraints, over a structured output
space all while being amenable to end-to-end learning via maximum likelihood.
SPLs combine exact probabilistic inference with logical reasoning in a clean
and modular way, learning complex distributions and restricting their support to
solutions of the constraint. As such, they can faithfully, and efficiently, model
complex SOP tasks beyond the reach of alternative neuro-symbolic approaches.
We empirically demonstrate that SPLs outperform these competitors in terms of
accuracy on challenging SOP tasks including hierarchical multi-label classification,
pathfinding and preference learning, while retaining perfect constraint satisfaction.
Our code is made publicly available on Github at github.com/KareemYousrii/SPL.

1 Introduction

Modularity is among the major factors that propelled the Cambrian explosion of deep learning [35].
By stacking multiple differentiable layers together, practitioners are able to train deep classifiers in
an end-to-end fashion with little effort. However, despite its flexibility, this modular approach to
learning does not guarantee that the predictions of these models conform to our expectations of what
makes sense. On the contrary, unconstrained deep classifiers are notorious for leading to predictions
that are inconsistent with the logical constraints governing an underlying domain.

This is even more evident in, and crucial for, structured output prediction (SOP) tasks, where
classifiers have to predict hundreds of mutually constrained labels [73, 8]. Consider for example a
classical SOP task such as multi-label classification (MLC) [74]. Learning a multi-label classifier that
disregards the correlations among labels, e.g., by considering them fully independent given the inputs,
yields sub-optimal results [6]. In more challenging tasks such as hierarchical MLC (HMLC) [71] or
pathfinding [60], leveraging the domain’s logical constraints (encoding, e.g., the label hierarchy or
acyclicity and connectedness of a path) at training time can improve prediction accuracy [44], but it
cannot guarantee that the predictions are always consistent with the constraints at inference time [32].
Fig. 1 illustrates this problem in the context of pathfinding: constraint-unaware neural networks
systematically fail to predict label configurations that form a valid path. In many safety-critical
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Figure 1: Neural nets struggle with satisfying validity constraints in complex semantic SOP
tasks such as predicting the lowest-cost path from the top-left to the bottom-right corners of a Warcraft
map. Even state-of-the-art neuro-symbolic approaches like the Semantic Loss [80] fail to ensure
consistency with hard rules (c). SPLs in contrast guarantees validity while retaining modularity,
expressiveness and efficiency. See Sec. 5 for complete experimental details and additional results.

scenarios such as protein function [63] and interaction prediction [65], and drug discovery [20, 24],
predicting inconsistent solutions can not only be harmful but also highly expensive [5, 34].

Unsurprisingly, due to their discrete nature, injecting logical constraints into deep neural networks
while retaining modularity and differentiability is extremely challenging, as demonstrated in the neuro-
symbolic learning literature [66]. One such attempt has been to learn neural networks that satisfy the
logical constraints by explicitly minimizing a differentiable loss term encoding the probability that
the networks violates the constraint for a given prediction. And while successful, such approaches do
not guarantee consistency of the predictions at test time. More recently, researchers have proposed
predictive layers that do guarantee consistency, but these are restricted to specific kinds of symbolic
knowledge [32, 70] or become intractable for even moderately complex logical constraints [38].

Motivated by these observations, we introduce a novel Semantic Probabilistic Layer (SPL) for
modeling intricate correlations, and logical constraints on the labels of the output space in a modular
and probabilistically sound manner. It does so by leveraging recent advancements in the literature on
probabilistic circuits [76, 13]. The key features of SPL are that, on the one hand, it can be used as a
drop-in replacement for common predictive layers of deep nets like sigmoid layers, and on the other,
it guarantees the output’s consistency with any prespecified logical constraints. Importantly, SPL
also supports efficient inference and – perhaps surprisingly – does not complicate training.

Contributions. Summarizing, we: (i) Identify six desiderata that neuro-symbolic predictors ought
to satisfy to flexibly and reliably support real-world SOP tasks, and show that state-of-the-art
approaches fall short of one or more of them (Table 1); (ii) Introduce SPL, a novel semantic
probabilistic layer that leverages probabilistic circuits to satisfy all six desiderata, i.e., that can be
plugged into neural networks to ensure predictions to comply to given logical constraints, while
retaining efficiency, expressivity, differentiability, and fully probabilistic semantics; (iii) We provide
empirical evidence of the effectiveness of SPL in several challenging neuro-symbolic SOP tasks,
such as HMLC and pathfinding, where it outperforms state-of-the-art neuro-symbolic approaches,
often by a noticeable margin. We implemented SPLs in PyTorch [54], and our code is made publicly
available on Github at github.com/KareemYousrii/SPL.

2 Designing a probabilistic layer for neuro-symbolic SOP
Notation. In the following, we denote scalar constants x in lower case, random variables X in
upper case, vectors of constants x in bold and vectors of random variables X in capital boldface.
1{ϕ} denotes the indicator function that evaluates to 1 if the statement ϕ holds and to 0 otherwise.
We denote by x |= K that the value assignment x to variables X satisfies a logical formula K.

Neuro-symbolic SOP. We tackle SOP tasks in which a neural net classifier must learn to associate
instances x ∈ RD to L interdependent labels, identified by the vector y ∈ {0, 1}L. We assume that
we can abstract any neural classifier into two components: a feature extractor f that maps inputs
X to a M -dimensional embedding Z = f(X) and a predictive final layer that outputs the label
distribution p(Y | Z). For example, the simplest, and yet widely adopted [51, 80, 32], predictive
layer in neural classifiers for SOP considers labels Yi to be conditionally independent from each other
given Z, i.e., p(Y | Z) = ∏L

i=1 p(Yi | Z). We refer to this as fully independent layer (FIL). In a FIL,
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Table 1: SPL is the only approach to satisfy all the desiderata for neuro-symbolic SOP. An
in-depth discussion of all competitors can be found in Sec. 4.

LOSSES LAYERS

DESIDERATUM DL2 [29] SL [80] NESYENT [3] FIL EBM [43] MULTIPLEXNET [38] CCN [33] SPL (ours)

(D1) Probabilistic 7 3 3 3 7 3 7 3
(D2) Expressive 7 7 7 7 3 7 7 3
(D3) Consistent 7 7 7 7 7 3 3 3
(D4) General 3 3 3 7 3 3 7 3
(D5) Modular 3 3 3 3 3 3 3 3
(D6) Efficient 3 3 3 3 7 7 3 3

p(Yi = yi | z) is computed as σ(w>i z) where wi ∈ RM is a vector of parameters and σ(x) is the
logistic sigmoid function 1/(1 + e−x).

We are interested in dependencies between labels that can occur both as correlations, as is the case
in MLC [22], and as logical constraints encoded by logical formulas. For example, in a HMLC
task [32] one logical constraint can encode the fact that observing a label for the class cat and dog,
implies observing the label for their superclass animal

(Ycat = 1 =⇒ Yanimal = 1) ∧ (Ydog = 1 =⇒ Yanimal = 1). (1)

Specifically, we assume symbolic knowledge to be supplied in the form of constraints encoded as
a logical formula denoted as K and defined over the labels Y and optionally over a subset of the
discrete input variables in X, if any (e.g., in our experiments, the predicted simple path is constrained
to lie within the subset of edges appearing in the input graph, see Sec. 5). On the other hand, we
expect a model to learn the label correlations from data. We call such task neuro-symbolic SOP.

Desiderata for neuro-symbolic SOP. To tackle this setting, we seek an algorithmic strategy for
replacing the predictive layer in any neural network classifier with little effort, with the aim of injecting
complex symbolic knowledge and allowing for flexible probabilistic reasoning. We formalize these
observations into the following six desiderata for our predictive layer:

D1. Probabilistic: The layer should enjoy sound probabilistic semantics, and deliver normalized
probabilistic predictions to facilitate maximum-likelihood learning and sound decision
making by virtue of calibrated probabilistic predictions

D2. Expressive: It should be able to compactly encode intricate correlations between labels.
D3. Consistent: It should always output predictions that are consistent with the prespecified

symbolic knowledge, i.e., for all x and y, if (x,y) 6|= K then p(y | x) = 0.
D4. General: It should support rich logical constraints over the labels expressed in some formal

language, e.g., propositional logic.
D5. Modular: It should be applicable to any off-the-shelf (and possibly pretrained) neural

network in a modular fashion, enabling end-to-end learning and rapid prototyping.
D6. Efficient: The time required by the predictor to compute a prediction should be linear in the

size of the predictor and of the hard constraint representation.

For example, FILs are clearly probabilistic (D1), modular (D5), and efficient (D6), but at the cost
of being incapable of modeling intricate correlations and logical constraints and thus generating
inconsistent predictions (D2–D4) (see also Fig. 1). Table 1 summarizes how the other popular and
effective approaches to neuro-symbolic SOP nowadays fall short of one of more desiderata as well.
We discuss this in detail in Sec. 4. To the best of our knowledge, our proposed semantic probabilistic
layers (SPLs) are the first algorithmic solution to satisfy all above desiderata.

SPL. At a high level, SPL realizes the above desiderata in a single layer that combines exact proba-
bilistic inference with logical reasoning in a clean and modular way, learning complex distributions
and restricting their support to solutions of the constraint.
Definition 2.1 (Semantic probabilistic layer (SPL)). Given an input configuration x, a SPL decom-
poses the computation of the probability of a label configuration as:

p(y | f(x)) = qΘ(y | f(x))·cK(x,y)/Z(x) where Z(x) =
∑

y
qΘ(y | x)·cK(x,y). (2)
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Figure 2: A high level view of SPLs. The predictive layer of a neural network for neuro-symbolic
SOP, e.g., a FIL (left), can be readily replaced by a SPL (middle). SPLs are implemented (right)
by multiplying together a probabilistic circuit qΘ(Y | f(X)) parameterized by (a function g of) the
network’s embeddings f(X), and a constraint circuit cK(X,Y) embodying the symbolic knowledge.
The result is normalized by efficiently marginalizing over the product circuit rΘ,K, so as to guarantee
fully probabilistic semantics and end-to-end differentiable learning by maximum likelihood.

Here, qΘ(y | f(x)) is a module to perform probabilistic reasoning by encoding an expressive
distribution over the labels parameterized by Θ; cK(x,y) is a module to ensure consistency of the
predictions by encoding logical constraints K and being non-zero only when K is satisfied, i.e.,
cK(x,y) = 1{(x,y) |= K}; and Z(x) is a renormalization term, also called the partition function.
It is worth noting that this amounts to taking a product of experts [37] which is, in general, hard.

Fig. 2 illustrates the computational graph of our SPL at training time. In order to satisfy all D1-D6, we
will realize both qΘ and cK as circuits [76, 13], constrained computational graphs that enable tractable
computations. Differently from FILs, qΘ in SPLs can encode an expressive joint distributions over
the labels and therefore attain full expressiveness by scaling the number of parameters Θ (D2).
Consistency is guaranteed by the component cK: by multiplying it to the joint probability of a label
configuration the resulting product distribution rΘ,K(y,x) = qΘ(y | f(x)) · cK(x,y) will have its
support effectively cut by K, and thus cannot allocate any probability mass to inconsistent predictions
(D3). Additionally, cK will allow to encode general propositional logical constraints in a compact
computational graph (D4). Lastly, the product rΘ,K(x,y) is fully differentiable and allows SPL to be
an off-the-shelf replacement for other predictive layers (see Fig. 2) and enables end-to-end learning
(D5). By renormalizing rΘ,K(x,y) and outputting normalized probabilities, SPL enables the exact
computation of gradients for Θ, which can therefore be trained by maximum likelihood (D1).

Thanks to recent advancements in the literature on circuits, we can compute the partition function
Z(x) efficiently in time linear in the size of rΘ,K, thus preserving efficiency (D6) and not com-
promising on the other desiderata. This will also yield correct (and consistent) predictions at test
time, when an SPL computes the MAP state y∗ = argmaxy rΘ,K(y,x)/

∑
y rΘ,K(y,x). The next

section clarifies how to implement the modules of SPL as circuits while satisfying these desiderata.

3 Realizing SPLs with tractable circuit representations

The components of SPLs are circuits, a large class of computational graphs that can represent both
functions and distributions [13, 18]. Circuits subsume many tractable generative and discriminative
probabilistic models—from Chow-Liu and latent tree models [14, 11], to hidden Markov models
(HMMs) [62], sum-product networks (SPNs) [61], decision trees [41, 15], and deep regressors [40]—
as well as many compact representations of logical formulas, such as (ordered) binary decision
diagrams [4], sentential decision diagrams (SDDs) [17] and others [18].

The key idea behind SPLs is to leverage this single formalism to represent both an expressive joint
distribution for qΘ(y | f(x)) and a compact encoding of the logical constraints for cK(x,y), while
ensuring the exact and efficient evaluation of Eq. (2). This can be achieved by ensuring that these
computational graphs abide certain structural properties: smoothness, decomposability, determinism
and compatibility [18, 75]. Next, we introduce probabilistic circuits for modeling qΘ (Sec. 3.1) and
constraint circuits for cK (Sec. 3.2), while in Sec. 3.4 we propose a more efficient implementation of
SPL utilizing a single circuit.
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Figure 3: Examples of circuits in SPL. Left: a neural conditional probabilistic circuit qΘ. Red
lines indicate how the output of g parameterizes the input distribution parameters λ and the sum unit
parameters ω of q, both indicated as red dots. Right: constraint circuit encoding the logical constraint
of Eq. (1) where labels are Yi ∈ {Ycat, Ydog, Yanimal}. Note that q and c are smooth, decomposable
(Def. 3.3) and compatible (Def. 3.7) and c is deterministic (Def. 3.6). By parameterizing c via g we
can obtain a single-circuit SPL (Sec. 3.4). Both: circuits q and c are compatible, as product units
with the same scope decompose in the same way. E.g., consider the first two product units of q and c,
right to left and top to bottom. Both units decompose {Y3, Y2, Y1} into Y3 and Y2, Y1.

3.1 Representing expressive distributions with probabilistic circuits

We start by introducing circuits for joint probability distributions, and then extend the discussion to
conditional distributions, which we use to implement qΘ(Y | f(X)) in SPLs.

Definition 3.1 (Circuits). A circuit h over variables Y is a computational graph encoding a pa-
rameterized function hΘ(Y) by combining three kinds of computational units: input functional
units, sum units, and product units. An input functional n represents a base parametric function
hn(sc(n);λ) over some variables sc(n) ⊆ Y, called its scope, and it is parameterized by λ. Sum and
product units n elaborate the output of other units, denoted in(n). Sum units are parameterized by ω
and compute the weighted sum of their inputs

∑
c∈in(n) ωchc(sc(n)), while product units compute∏

c∈in(n) hc(sc(n)). The parameters Θ of a circuit encompass the parameters of all input functionals
(λ) and the parameters of sum units (ω).

For any input y, the value of hΘ(y) can be evaluated by propagating the output of the input units
through the computational graph and reading out the value of the last unit. The support of h is the set
of all states y of Y for which the output is non-zero, i.e., supp(h) = {y |h(y) 6= 0}.
Definition 3.2 (Probabilistic circuits (PCs)). A circuit q is a PC if it encodes a (possibly unnormalized)
probability distribution, i.e., qΘ(y) is non-negative for all configurations y of Y.

From here on, we will assume PCs to have positive sum parameters ω and whose input units model
valid distributions, e.g., Bernoullis, as these conditions are sufficient for satisfying Def. 3.2. Moreover,
w.l.o.g. we will assume the sum and product units to be organized into alternating layers, and that
every product unit n receives only two inputs c1, c2, i.e., qn(X) = qc1(Y) · qc2(Y). These conditions
can easily be enforced in polynomial time [77, 78]. We are specifically interested in smooth and
decomposable PCs, as they will be enabling efficient inference in SPL (Sec. 3.3).

Definition 3.3 (Smoothness & Decomposability). A circuit is smooth if for every sum unit n, its inputs
depend on the same variables: ∀ c1, c2 ∈ in(n), sc(c1) = sc(c2). It is decomposable if the inputs of
every product unit n depend on disjoint sets of variables: in(n) = {c1, c2}, sc(c1) ∩ sc(c2) = ∅.

Smooth and decomposable PCs are both expressive and efficient: they can encode distributions with
hundred millions of parameters and be effectively learned by gradient ascent [58]. The structure of
their computational graph can be either specified manually [61, 58, 56] or acquired automatically
from data [77, 64, 16], e.g., by first learning a latent tree model and then compiling the latter into a
circuit [46]. These circuits are competitive with intractable models such as variational autoencoders
and normalizing flows scores on several benchmarks [45].

As proposed by Shao et al. [68], any (smooth and decomposable) PC qΘ(Y) encoding a joint
distribution over the labels Y can be turned into a (smooth and decomposable) conditional circuit,
conditioned by input variables X, by letting its parameters be a function of X.

Definition 3.4 (Neural conditional circuits [67]). A conditional circuit q(Y;Θ = g(X)) models the
conditional distribution p(Y | X) via a differentiable function g that maps every input configuration
x to the set of parameters of Θ of p, also called the gating function.
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An example of a smooth and decomposable conditional circuit is shown in Fig. 3. This design
immediately allows us to implement qΘ(Y | f(X)) in SPL as a conditional PC whose gating function
maps the feature embedding space RK to the parameter space R|Θ|+ , realizing q(Y;Θ = g(f(X))).
As such, the gating function g creates a clean interface between any pre-trained feature extractor
f and the PC q (Fig. 3). While one can devise g in several ways, we strive for simplicity in our
experiments and adopt vanilla multi-layer perceptrons (MLPs) whose final activations are either
sigmoids, if they have to predict the parameters λ of the Bernoulli input distributions of q, or softmax,
if they output the sum unit parameters ω (Def. 3.1).

3.2 Encoding logical formulas with constraint circuits

The next step is to translate a logical constraint K into a smooth and decomposable circuit cK(x,y).
To this end, we employ a special type of PCs, defined as follows.

Definition 3.5 (Constraint circuits). A PC c over variables X ∪Y is a constraint circuit encoding
prior knowledge K if it computes 1{(x,y) |= K} for every configuration (x,y).

As a practical way to realize such a circuit, we will consider constraint circuits that have all sum
unit parameters equal to 1 and input functionals that are indicator functions over their scope, e.g.,
cn(z) = 1{z |= ϕ(n)} where Z is the scope of the input and ϕ(n) a constraint over it. Furthermore,
we require each sum unit in it to be deterministic.

Definition 3.6 (Determinism). A sum unit n is deterministic if its inputs have disjoint supports, i.e.,
∀ c1, c2 ∈ in(n), c1 6= c2 =⇒ supp(c1) ∩ supp(c2) = ∅.

Fig. 3 shows an example of a deterministic constraint circuit. Thanks to determinism, we can readily
translate classical compact representations for logical formulas such as (ordered) binary decision
diagrams [4, 9] and sentential decision diagrams (SDDs) [17] into constraint circuits as defined above.
This becomes evident when they are written in the language of negation normal form [18] and their
and gates (resp. or gates) are replaced with product units (resp. sum units) [13]. A logic constraint
can therefore be represented as a constraint circuit for SPLs, by utilizing any of the many tools
available for OBDDs [72] or SDDs [10, 53]. Sec. B illustrates in detail how to compile the example
constraint of Eq. (1) into the constraint circuit of Fig. 3 in this way.

The worst-case size of the constraint circuit depends on a) the algorithm employed for compilation
and, b) the local structure of the constraints, rather than the number of labels. For example, in our
Warcraft experiment (see Sec. 5), we have a label configuration space over edges in a 12× 12 grid,
yielding 212

2

= 2144 ≈ 1043 states. However, only 1010 configurations satisfy the constraint that
these edge labels form a valid path in the grid. If our compilation algorithm were to simply enumerate
these configurations, putting them in a logical OR (as done in some neuro-symbolic learners such
as MultiplexNet [38]), the size of the constraint circuit, denoted as |c|, would be 1010. However, by
using recent advancements in compiling logical formulas into constraints circuits, we can can greatly
reduce the circuit size. For example, compiler we use [1] generates circuits whose size is worst-case
exponential in the treewidth of the CNF representation of the logical formula, but typically much
smaller. See Sec. 5 and Sec. F for details.

3.3 Efficient inference in SPLs

As discussed above, PCs can be expressive (D2) and are modular (D5), while constraint circuits
ensure consistency (D3) for general constraints (D4). What remains to be shown to complete SPLs is
that the product supports efficient normalization (D1) and inference (D6), specifically that it allows
for the efficient evaluation of the normalization constant of rΘ,K, and its MAP state. To this end, we
need to introduce the notion of compatibility between the two circuits [75].

Definition 3.7 (Compatible circuits in SPLs). A smooth and decomposable conditional PC q(Y;Θ)
is compatible over variables Y with a smooth and decomposable constraint circuit cK(Y,X) if
any pair of product units n ∈ q and m ∈ cK with the same scope over Y can be rearranged
to be mutually compatible and decompose in the same way: (sc(n) = sc(m)) =⇒ (sc(ni) =
sc(mi), ni and mi are compatible) for some rearrangement of the inputs of n (resp. m) into n1, n2
(resp. m1,m2). The two circuits q and c shown in Fig. 3 are compatible.
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Table 2: SPLs outperform all loss-based competitors in the neuro-symbolic benchmarks of [80].

SIMPLE PATH PREFERENCE LEARNING

ARCHITECTURE EXACT HAMMING CONSISTENT EXACT HAMMING CONSISTENT

MLP+FIL 5.6 85.9 7.0 1.0 75.8 2.7
MLP+LSL 28.5 83.1 75.2 15.0 72.4 69.8
MLP+NESYENT 30.1 83.0 91.6 18.2 71.5 96.0
MLP+SPL (ours) 37.6 88.5 100.0 20.8 72.4 100.0

Theorem 3.1 (Efficient inference in SPLs). If q(Y;Θ) and cK(Y,X) are two smooth, decomposable
and compatible circuits, then computing Eq. (2) can be done in O(|q||c|) time. Furthermore, if they
are also deterministic, then computing the MAP state can be done in O(|q||c|) time.

The proof can be found in Sec. A. How do we come up with compatible circuits? One option is
to have a PC q that is compatible with every possible smooth and decomposable circuit c. To do
so, we can represent q as a mixtures of M fully-independent models; i.e.,

∑M
i=1 ωi

∏
j q(Yj ;Θi).

This additional sum unit can be enough to be more expressive than a FIL and already delivers more
accurate predictions than any competitor, as our experiments in pathfinding show (Sec. 5). An
example of such a circuit is shown in Fig. 3. Another sufficient condition for compatibility is that
both q and c share the exact same hierarchical scope partitioning [75], sometimes called a vtree or
variable ordering [13, 59].

This can be done easily if one first compiles logical constraints into OBDDs or SDDs and then uses a
mechanized algorithm to build q as in [58] to create a compatible structure. Additionally, to ensure q
is a deterministic PC, we could exploit the mechanized construction proposed in Shih and Ermon [69].
Computing the exact MAP state, however, is of less concern as approximate inference algorithms,
e.g., beam search decoding [79] or iterative pruning [12], are nowadays a commodity in deep learning
frameworks. For non-deterministic PCs, we compute the MAP state with a faster approximation by
replacing non-deterministic sum units with max units [55]. This runs in time linear in the size of r,
and yet delivers state-of-the-art accuracies in our experiments Sec. 5.

3.4 A single-circuit SPL

The two-circuit design we proposed for SPLs provides a clear and theoretically-backed interface
between neural networks and probabilistic and symbolic reasoning. This setup, however, can
sometimes be wasteful, as it requires to compute the product of two circuits and renormalize. We
circumvent this issue by designing a single-circuit implementation of SPL.

Definition 3.8 (Single-circuit SPL). Given an input configuration x, a single-circuit SPL computes
p(y | x) = cK(Y,X;Ω = g(f(X))) where cK is a neural conditional constraint circuit whose
sum-unit parameters Ω are non-unitary values parameterized via a gating function g.

In a nutshell, we can directly realize SPL by compiling a complex logical constraints (D4) into a
deterministic constraint circuit cK, as before, and then parameterizing it with a gating function of
the network embeddings f(X), i.e., allowing its sum units to be non-unitary and input dependent.
Since the support of cK is already restricted to exactly match the constraint K (D3), parameterizing Ω
induces an expressive probability distribution over the label configurations that are consistent with
K (D2). We can further guarantee that the circuit’s output are normalized probabilities (D1, D6) by
enforcing the parameters ω of each sum unit to form a convex combination [57]. This can be easily
done by utilizing a softmax activation function for g.

One of the advantages of the two-circuit implementation of SPLs is that the size of the circuit
qΘ can be easily increased to improve the capacity of the model (Sec. 3.1). The single-circuit
implementation is not as flexible, as normally the number of parameters is determined by the
complexity of the constraint circuit, which depends entirely on the compilation step. In this case,
one option is to overparameterize the neural conditional circuit by introducing additional sum units,
hence allowing it to capture more modes in the distribution. We detail this process is Sec. C. A side
effect of overparameterization is that it relaxes determinism, meaning that MAP inference needs to
be approximated, as described in Sec. 3.3. Additionally, training a gating function to map relatively
small embeddings to large parameter vectors in overparameterized circuits, can slow down training.
In such cases, a two-circuit implementation of SPL is to be preferred.
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4 Related works

In this section, we position SPLs against state-of-the-art approaches for enforcing constraints on
neural network predictions. In-depth surveys on this topic can be found in [19] and [34].

Energy-based models. Deep energy-based models (EBMs) replace FILs with an unnormalized
factor graph [42] that captures higher-order label dependencies [43] (D2) but at the cost of foregoing
probabilistic semantics (D1) and efficiency (D6). EBMs are typically unconcerned with hard con-
straints (D3). Neural approaches for segmentation [47] and parsing [28, 82, 83] remedy to this by
replacing the factor graph with a full-fledged intractable (discriminative) graphical model [42]. To
gain efficiency, one can restrict EBMs to simpler graphical models (e.g., chains, trees), compromising
expressiveness (D2) and the ability to model non-trivial logical constraints (D3, D4).

Loss-based methods. A prominent strategy consists of penalizing the network for producing incon-
sistent predictions using an auxiliary loss [19, 34]. While popular, loss-based methods, however
cannot guarantee that the predictions will be consistent at test time. Common losses include translat-
ing logical constraints into a differentiable fuzzy logic [25, 26], as exemplified by DL2 [29]. Although
efficient (D6), this solution is not probabilistically sound (D1) and crucially is not syntax-invariant:
different encodings of the same formula (e.g., conjunctive vs. disjunctive normal form) yield different
losses [31, 24]. Closer to our SPL, the Semantic Loss (SL) [80] avoids this issue by penalizing the
the probability θi associated to the i-th label by the neural network via the loss term

LSL ∝ −
∑
y|=K

∏
y|=Yi

θi
∏

y 6|=Yi

(1− θi) = −
∑
y|=K

∏
i

p(Yi | x) = −
∑
y

∏
i

q(Yi; θi) · cK(x,y).

When K is compiled into a constraint circuit cK one retrieves −Z(x) for a two-circuit version of SPL
that is as expressive as FIL as it assumes independent labels via a conditional PC

∏
i q(Yi; θi). The

neuro-symbolic entropy (NESYENT) [3] extends LSLby an entropy term that improves (but still does
not guarantee) consistency. It still makes the same independence assumptions over labels (D2).

Consistency layers. Approaches ensuring consistency by embedding the constraints into the pre-
dictive layer as in SPLs include MultiplexNet [38] and HMCCN [32]. MultiplexNet is able to
encode only constraints in disjunctive normal form, which is problematic for generality (D4) and
efficiency (D6) as neuro-symbolic SOP tasks involve an intractably large number of clauses – e.g. our
pathfinding experiments involves billions of clauses. HMCCN encodes label dependencies as fuzzy
relaxation and is the current state-of-the-art model for HMLC [32]. HMCCN and even its recent
extension [33] are restricted to only certain constraints that can be exactly encoded with fuzzy logic
easily. SPLs instead can express constraints encoded as arbitrary propositional logical formulas (D4).

Other approaches. Other common approaches to neuro-symbolic SOP require to invoke a solver to
either obtain the MAP state or to compute (often only approximately) the gradient of the loss [23, 60,
52]. SPLs have no such requirement. Some neuro-symbolic approaches [66] constrain the outputs of
neural networks within complex logical reasoning pipelines to solve tasks harder than neuro-symbolic
SOP. For instance, DeepProblog [48] uses Prolog’s backward chaining algorithm for first order
logical rules whose probabilistic weights are predicted by the network. In modern implementations of
Problog, grounding a first order program and then compiling it into constraint circuits [27] produces
a conditional circuit akin to those we use in SPLs, but in which (i) only input distributions are
parameterized and (ii) increasing the parameter count is not considered a straightforward operation.
Scallop [39] provides a more scalable approach to deepproblog by considering only the top-k proofs.
We leave to future work how we could quickly compile only a specific query as DeepProblog/Scallop
do, to deal with first-order representations efficiently.

5 Experiments

We evaluate SPLs on standard neuro-symbolic SOP benchmarks such as simple path prediction,
preference learning [80], shortest path finding in Warcraft [60] and HMLC [32]. We compare SPLs
against several state-of-the-art loss- and layer-based approaches (Sec. 4) by applying them to the
same base neural network architecture as feature extractor f . As we are interested in measuring how
close to the ground truth and how safe the predictions of all models are, we report the percentage
of EXACT matches of the predicted labels, also called subset accuracy [74], and the percentage of
CONSISTENT predictions, also called “Constraint” [80]. Note that, like other consistency layers,
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Table 3: SPLs outperform competitors in pathfinding in Warcraft. Predicted paths that do not exactly
match the ground truth are still valid paths and yield very close costs to the ground truth. Competitors’
predictions can have higher Hamming scores but be invalid. More examples in Sec. D.3.

ARCHITECTURE EXACT HAMMING CONSISTENT

RESNET-18+FIL 55.0 97.7 56.9
RESNET-18+LSL 59.4 97.7 61.2
RESNET-18+SPL (ours) 78.2 96.3 100.0

GROUND TRUTH FIL LSL SPL

SPLs are guaranteed to always output 100% consistent predictions. Additionally, we report the
HAMMING score [74], mainly to maintain compatibility with previous experimental settings [80, 3].
This metric does not consider consistency of predictions and naturally favors competitors that assume
label independence and thus can minimize the per-label cross-entropy [22] (Table 3). Sec. D collects
all experimental details such as architectures and hyperparameters used for each experiment.

In Sec. F we provide the average timings for compiling logical formulas into circuits—carried out
once, and reused in all subsequent experiments, for parameterizing the conditional circuits, computing
the MAP-state of SPL and the loss function at training time (including the cost of computing the
product circuit r and its normalization). All these timings, compilation excluded, are reported per
batch. We compare to the timings of baselines such as semantic loss and neuro-symbolic entropy,
where applicable, to which SPL is highly competitive.

Simple path prediction & preference learning. We start by comparing SPLs against loss-based
approaches, reproducing the neuro-symbolic benchmarks of Xu et al. [80] for simple path prediction
and preference learning. In the first experiment, given a source and destination node in an unweighted
grid G = (V,E), the neural net needs to find the shortest unweighted path connecting them. We
consider a 4 × 4 grid. The input (x,y) is a binary vector of length |V | + |E|, with the first |V |
variables indicating the source and destination nodes, and the subsequent |E| variables indicating a
subgraph G′ ⊆ G. Each label is a binary vector of length |E| encoding the unique shortest path in
G′. For each example, we obtain G′ by dropping one third of the edges in the graph G uniformly at
random, filter out the connected components with fewer than 5 nodes, to reduce degenerate cases,
and then sample a source and destination node uniformly at random from G′. The dataset consists of
1600 such examples, with a 60/20/20 train/validation/test split.

In the preference learning task, given a user’s ranking over a subset of items, the network has to
predict the user’s ranking over the remaining items. We encode an ordering over n items as a binary
matrix Yij , where for each i, j ∈ 1, . . . , n, Yij indicates whether item i is the jth element in the
ordering. The input x consist of the user’s preference over 6 sushi types, and the model has to predict
the user’s preferences (a strict total order) over the remaining 4. We use preference ranking data over
10 types of sushi for 5, 000 individuals, taken from [49], and a 60/20/20 split.

We employ a 5-layer and 3-layer MLP as a baseline for the simple path prediction, and prefer-
ence learning, respectively, equipped with FIL layer and additionally with the Semantic Loss [80]
(MLP+LSL) or its entropic extension [3] (MLP+NESYENT). We compile the logical constraints into
an SDD [17] and then turn it into a the same constraint circuit cK that is used for LSL, NESYENT
(Sec. 4) and our 1-circuit implementation of SPLs. Table 2 clearly shows that the increased expres-
siveness of SPL, coming from overparameterizing cK, allows to outperform all competitors while
guaranteeing consistent predictions, as expected.

Warcraft Shortest Path. Next, we evaluate SPL on the more challenging task of predicting the
minimum cost path in a weighted 12× 12 grid imposed over terrain maps of Warcraft II [60]. Each
vertex is assigned a cost corresponding to the type of the underlying terrain (e.g., earth has lower cost
than water). The minimum cost path between the top left and the bottom right vertices of the grid is
encoded as an indicator matrix, and serves as a label. As in [60] we use a ResNet18 [36] with FIL
optionally with LSL as a baseline. Given the largest size of the compiled constraint circuit cK in this
case 1010, we use a two-circuit implementation of SPL. Results in Fig. 1 and Table 3 are striking: not
only SPL outperforms competitors by a large margin – approx. +23% over FIL and +19% over the
SL – but also consistently delivers meaningful paths that are very close to the ground truth in terms
of cost, even when they encode very different routes. See Sec. D.3 for a gallery of these examples.
Concerning times, SPLs are able to compute the likelihood in a mere 14 seconds per batch even on a
1010 valid configuration space (Sec. F).
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Table 4: Comparison between
SPL and HMCNN [32] on twelve
HMLC datasets averaged over 10
runs. Best results for each dataset
are in bold. Results which are not
significantly worse than the compe-
tition, as determined using an un-
paired Wilcoxon test, are marked
in boldface. Consistency is always
100% for both approaches.

DATASET EXACT MATCH HAMMING SCORE

HMCNN MLP+SPL HMCNN MLP+SPL

CELLCYCLE 3.05 ± 0.11 3.79 ± 0.18 98.26 ± 0.00 97.84 ± 0.06
DERISI 1.39 ± 0.47 2.28 ± 0.23 98.32 ± 0.32 97.70 ± 0.07
EISEN 5.40 ± 0.15 6.18 ± 0.33 98.09 ± 0.01 97.30 ± 0.04
EXPR 4.20 ± 0.21 5.54 ± 0.36 98.29 ± 0.01 97.87 ± 0.02
GASCH1 3.48 ± 0.96 4.65 ± 0.30 98.37 ± 0.31 97.59 ± 0.05
GASCH2 3.11 ± 0.08 3.95 ± 0.28 98.27 ± 0.00 97.94 ± 0.07
SEQ 5.24 ± 0.27 7.98 ± 0.28 98.31 ± 0.01 97.66 ± 0.03
SPO 1.97 ± 0.06 1.92 ± 0.11 98.23 ± 0.00 98.17 ± 0.03
DIATOMS 48.21 ± 0.57 58.71 ± 0.68 99.75 ± 0.00 99.64 ± 0.01
ENRON 5.97 ± 0.56 8.18 ± 0.68 94.10 ± 0.04 93.19 ± 0.13
IMCLEF07A 79.75 ± 0.38 86.08 ± 0.45 99.40 ± 0.01 99.35 ± 0.03
IMCLEF07D 76.47 ± 0.35 81.06 ± 0.68 98.06 ± 0.02 98.07 ± 0.08

Hierarchical Multi-Label Classification. Lastly, we follow the experimental setup of Giunchiglia
and Lukasiewicz [32] and evaluate SPL on 12 real-world HMLC tasks spanning four different do-
mains: 8 functional genomics, 2 medical images, 1 microalgea classification, and 1 text categorization.
Fig. 3 shows an example of a hierarchy of classes. These tasks are especially challenging due to the
limited number of training samples, the large number of output classes, ranging from 56 to 499, as
well as the sparsity of the output space. The larger datasets yield a label space of 2499 configurations,
but we can compile them in seconds into compact constraints circuits of size ≈ 108KB (Sec. F).

For numeric features we replaced missing values by their mean, and for categorical features by a
vector of zeros, and standardized all features. We used the validation splits to determine the number
of layers in the gating function as well as the overparameterization, keeping all other hyperparameters
fixed. The final models were obtained by training using a batch size of 128 and early stopping on the
validation set. We compare our single-circuit SPL against HMCNN which was shown to outperform
several other state-of-the-art HMLC approaches in Giunchiglia and Lukasiewicz [32]. We study the
effect of increasing the expressivenss of SPL via overparameterization in Sec. D.4. The results in
Table 5 highlight that SPL significantly outperforms HMCNN in terms of exact match on 11 data
sets performing comparably on 1,

6 Conclusion

SPLs offer the first clear interface for integrating complex probabilitistic reasoning and logical
constraints on top of any neural network classifier while retaining efficient inference and training.
They improve by a noticeable margin the current state-of-the-art on challenging neuro-symbolic
SOP benchmarks such as pathfinding and HMLC. This opens up a number of interesting research
directions. First, SPLs can be extended to incorporate logical constraints over multiple networks
and representable by first-order formulas [48], which we plan to explore in future works, making the
circuit construction pipeline totally transparent to users [2] while possibly automatically learning
constraints from data [21, 50]. Second, we are interested in leveraging SPLs to inject scalable logical
constraints into large language models [7] thus equipping them with probabilistic reasoning [30, 81].
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A Proofs

Theorem 3.1 (Efficient inference in SPLs). If q(Y;Θ) and cK(Y,X) are two smooth, decomposable
and compatible circuits, then computing Eq. (2) can be done in O(|q||c|) time, where | · | denotes the
circuit size. Furthermore, if they are also deterministic, then computing the MAP state can be done in
O(|q||c|) time. .

We prove the first statement by first showing that the partition function Z(x) in Eq. (2) can solved
exactly in time O(|q||c|). It will then follow from it that computing Eq. (2) can be done in O(|q||c|+
|q|+ |c|) ≈ O(|q||c|) where the last two additive factors derive from evaluating q and c for an input
configuration (x,y).

To do so, we will exploit two ingredients: i) the product of q and c can be represented as a smooth and
decomposable circuit in time O(|q||c|) [75] and ii) any smooth and decomposable circuit guarantees
tractable marginalization in time linear in its size [13]. The next two propositions formalize these
statements.
Proposition A.1 (Tractable product of circuits). Let q(Y;Θ) and cK(Y,X) be two smooth,
decomposable circuits that are compatible over Y then computing their product as a circuit
rΘ,K(X,Y) = q(Y;Θ) · cK(Y,X) that is decomposable over Y can be done in O(|q||c|). If
both q and c are also deterministic, then r is as well.

Proof. The proof directly follows from Theorem 3.2 from Vergari et al. [75].

Note that O(|q||c|) is a loose upperbound and the size of r is in practice smaller [75].
Proposition A.2 (Tractable marginalization of circuits). Let r(X,Y) be a circuit that is smooth and
decomposable over Y with input functions over Y that can be tractably marginalized out. Then
for any variables Y′ ⊆ Y and their assignment y′, the marginalization

∑
y′ r(y′,y′′,x) can be

computed exactly in time linear in the size of r, where Y′′ = Y \Y′.

Proof. The proof follows by considering that i) the input functionals in SPLs are simple distributions
such as Bernoullis and indicators and can be easily marginalized in O(1) and ii) that for every
configuration x of variables X, r(Y,x) is a circuit only over Y and therefore Proposition 2.1 from
Vergari et al. [75] can be directly applied.

Analogously, the second statement of Theorem 3.1 follows from Proposition A.1 and by recalling
that the MAP state of a deterministic circuit can be computed in time linear in its size.
Proposition A.3 (Tractable MAP state of circuits (Choi et al. [13])). Let r(X,Y) be a circuit that
is smooth and decomposable and deterministic over Y then for a configuration x its MAP state
argmaxy r(x,y) can be computed in time O(|r|).

B Compiling logical formulas into circuits

For our experiments we use standard compilation tools to obtain a constraint circuit starting from
a propositional logical formula in conjunctive normal form. Specifically, we use Graphillion1 to
compile the constraints in the Warcraft pathfinding experiment into an SDD. For all other experiments,
we use PySDD2 [1] a python SDD compiler [17, 10].

We now illustrate step-by-step one example of such a compilation for a simple logical formula.
Consider the constraint circuit c in Fig. 3 encoding the constraint

(Ycat =⇒ Yanimal) ∧ (Ydog =⇒ Yanimal). (3)

Intuitively, our aim is to compile the above logical formula into a compact form representing
all possible assignments to Ycat, Ydog, Yanimal satisfying the above constraint. We compile such a
constraint by proceeding in a bottom up fashion, where bottom-up compilation can be seen as
composing Boolean sub-functions whose domain is determined by a variable ordering, also called

1https://github.com/takemaru/graphillion
2https://github.com/wannesm/PySDD
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vtree (see Sec. 3.3). In this example, we assume the function f(Yanimal, Ycat, Ydog) decomposes as
f1(Yanimal) · f2(Ydog) · f3(Ycat) We therefore start by compiling a constraint circuit that is a function
of Ycat and Ydog, and compose it with a constraint circuit that is a function of Yanimal We first introduce
input functionals representing indicators associated with Ycat, Ydog, Yanimal. We will denote by Yi the
indicator 1{Yi = 1} and by ¬Yi the indicator 1{Yi = 0}.

1{Y1 = 0} 1{Y1 = 1} 1{Y2 = 0} 1{Y2 = 1} 1{Y3 = 0} 1{Y3 = 1}

We start by disjoining the indicators Ycat with ¬Ycat, and Ydog with ¬Ydog. This corresponds to
introducing deterministic and smooth sum units in our circuits.

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

These units represent disjoint solutions to the logical formula, meaning there exists distinct assign-
ments, characterized by the children, that satisfy the logical constraint e.g. Ycat, Ydog, Yanimal and
Ycat,¬Ydog, Yanimal are two distinct assignments that satisfy the logical constraint.

The compilation process proceeds by conjoining the constraint circuits for Ydog ∨ ¬Ydog with Ycat,
Ydog with Ycat ∨ ¬Ycat, and ¬Ydog with ¬Ycat.

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

A decomposable product units composes functions over disjoint sets of variables. The above three
product nodes represent the Boolean functions (Ydog ∨ ¬Ydog) ∧ Ycat, Ydog ∧ (Ycat ∨ ¬Ycat), and
¬Ydog ∧ ¬Ycat.
We again disjoin (Ydog ∨ ¬Ydog) ∧ Ycat with Ydog ∧ (Ycat ∨ ¬Ycat), and ¬Ydog ∧ ¬Ycat with true,
the logical multiplicative identity, guaranteeing alternating sum and product nodes, as mentioned in
Sec. 3.1.

So far, we have compiled constraint circuits for the logical formula

((Ydog ∨ ¬Ydog) ∧ Ycat) ∨ (Ydog ∧ (Ycat ∨ ¬Ycat)) (4)

and the logical formula
¬Ydog ∧ ¬Ycat (5)

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

×

What remains is to conjoin Eq. (4) with Yanimal, and Eq. (5) with ¬Yanimal, and disjoin the resulting
constraint circuits. What we get is a a mixture distribution over the possible solutions of the constraint:
If we predict there is a dog or a cat, or both, in e.g., an image, we better predict that there’s an animal.
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On the other hand, the absence of a dog and a cat from an image implies nothing as to the presence of
an animal in the image.

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

×

Compilation techniques like the one we illustrated do not, however, escape the hardness of the
problem: the compiled circuit can be exponential in the size of the constraint, in the worst case. In
practice, nevertheless, we can obtain compact circuits because real-life logical constraints exhibit
enough structure (e.g., they encode repeated sub-problems) that can be easily exploited by a compiler.
We refer to the literature of compilation for details on this [18].

C Overparameterizing the single-circuit SPL

As mentioned in Def. 3.8, SPLs can be realized as a single circuit by first compiling a complex logical
constraint into a deterministic constraint circuit, and then parameterizing it using a gating function of
the network embeddings. Intuitively, this parameterization induces a probability distribution over
the possible solutions of a logical formula encoded in the constraint circuit. The expressiveness of
this distribution depends on the number of parameters of the constraint circuit, i.e., the number of
weighted edges associated to sum units. As we would like to endow our single-circuit SPL with the
ability to induce complex distributions, we devise two strategies to introduce more parameters than
what the constraint circuit alone can offer: replication and mixture multiplication.

Replication works by maintaining m copies of the circuit, and taking their weighted average, i.e.,
introducing a sum unit that mixes them [58]. Mixture multiplication, instead, substitutes a single local
marginal distribution encoded by a sub-circuit rooted into a sum unit with k mixture models over the
same scope. In practice, we create k − 1 copies of each sum units and rewire them by computing a
cross product of their inputs as in Peharz et al. [58]. Algorithm 1 formalizes this process.

As mentioned in Def. 3.8, both strategies relax determinism. However, note that they do not alter the
support of the underlying distribution. This guarantees that all the predictions will be consistent with
the encoded constraint (D3) (Sec. 2).

D Additional experimental details

D.1 Simple path prediction and preference learning

In the simple path prediction task, given a source and destination node in an unweighted grid
G = (V,E), the neural net needs to find the shortest unweighted path connecting them. We consider
a 4 × 4 grid. The input (x,y) is a binary vector of length |V | + |E|, with the first |V | variables
indicating the source and destination nodes, and the subsequent |E| variables indicating a subgraph
G′ ⊆ G. Each label is a binary vector of length |E| encoding the unique shortest path in G′. For
each example, we obtain G′ by dropping one third of the edges in the graph G uniformly at random,
filtering out the connected components with fewer than 5 nodes, to reduce degenerate cases, and then
sample a source and destination node uniformly at random from G′. The dataset consists of 1600
such examples, with a 60/20/20 train/validation/test split.

In the preference learning task, given a user’s ranking over a subset of items, the network has to
predict the user’s ranking over the remaining items. We encode an ordering over n items as a binary
matrix Yij , where for each i, j ∈ 1, . . . , n, Yij indicates whether item i is the jth element in the
ordering. The input x consist of the user’s preference over 6 sushi types, and the model has to predict
the user’s preferences (a strict total order) over the remaining 4. We use preference ranking data over
10 types of sushi for 5, 000 individuals, taken from [49], and a 60/20/20 split.
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Algorithm 1 OVERPARAMETERIZE(c, k, cache, first_call)
1: Input: a smooth, deterministic, and structured-decomposable circuit c over variables X, an

overparameterization factor k, and a cache for memoization, and a flag to denote the first call
2: Output: an overparameterized, smooth, and structured-decomposable circuit c over X
3: if q ∈ cache then
4: return cache [q]
5: if c is an input unit then
6: nodes← [c]
7: else if c is a sum unit then
8: elements← [ ]
9: //For every product unit that is an input of c

10: //recursively overparameterize its inputs,
11: //which are sum units, and take their cross (cartesian) product
12: for (cL, cR) ∈ in(c) do
13: left← OVERPARAMETERIZE(cL, k)
14: right← OVERPARAMETERIZE(cR, k)
15: elements.APPEND([CROSSPRODUCT(left, right)]
16: in(c)← elements
17: nodes = [c] + [COPY(c) for i = 1 to k]
18: if first_call then
19: //Create a sum unit whose inputs are nodes
20: //and whose parameters are 1s.
21: nodes← SUM(nodes, {1}|nodes|i=1 )
22: cache(c)← nodes
23: return nodes

We follow Xu et al. [80] in employing a 5-layer with 50 hidden units each and sigmoid activation
functions, and 3-layer MLP with 50 hidden units each as a baseline for the simple path prediction,
and preference learning, respectively. We equip this baselines with a FIL and additionally with the
Semantic Loss [80] (MLP+LSL) or its entropic extension [3] (MLP+NESYENT).

We compile the logical constraints into an SDD [17] and then turn it into a constraint circuit cK
that is used for LSL, NESYENT (Sec. 4) and our 1-circuit implementation of SPLs. To obtain
the results for SPL in Table 2, we perform a grid search over the using the validation set for a
maximum of 2000 iterations, similar to Xu et al. [80]. We search over the learning rates in the range
{1× 10−3, 5× 10−3, 1× 10−4, 5× 10−4}, the overparameterization factor k in the range {2, 4, 8},
as well as the number of circuit mixtures m in the range {2, 4, 8}, evaluating the model with the best
performance on the validation set.

D.2 Hierarchical Multi-Label Classification

We follow the experimental setup of Giunchiglia and Lukasiewicz [32] and evaluate SPL on 12
real-world HMLC tasks spanning four different domains: 8 functional genomics, 2 medical images,
1 microalgea classification, and 1 text categorization. These tasks are especially challenging due
to the limited number of training samples, the large number of output classes, ranging from 56 to
4130, as well as the sparsity of the output space. We used the same train-validation-test splits and
experimental setup as [32]. For numeric features we replaced missing values by their mean, and for
categorical features by a vector of zeros, and standardized all features. We used the validation splits to
determine the number of layers in the gating function in the range {2, 4, 8}, the overparameterization
factor in the range {2, 4, 8}, and the number of mixtures in the range {2, 4, 8}, keeping all other
hyperparameters fixed. The final models were obtained by training using a batch size of 128 and
early stopping with a patience of 20 on the validation set.

D.3 Warcraft pathfinding

We evaluate SPL on the more challenging task of predicting the minimum cost path in a weighted
12× 12 grid imposed over terrain maps of Warcraft II [60]. Our setting differs from the one proposed
by Pogančić et al. [60] in two ways: i) a node only neighbors four nodes as instead of eight, excluding
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Table 5: A comparison of the performance of single-circuit SPL with different parameters: m,
the number of circuit copies in our replication strategy; gates, the number of layers in the gating
function; and k the overparameterization factor in the mixture multiplication strategy (Algorithm 1).
We report the percentage of exact matches of the predicted labels on the validation set of the
HMLC dataset, highlighting the best numbers in boldface. As can be seen, all datasets benefit from
overparameterization.

DATASET m: 2 m: 4 m: 8

GATES: 2 GATES: 4 GATES: 2 GATES: 4 GATES: 2 GATES: 4

k: 2 k: 4 k: 2 k: 4 k: 2 k: 4 k: 2 k: 4 k: 2 k: 4 k: 2 k: 4

CELLCYCLE 4.25 4.48 4.48 4.01 4.60 4.83 4.25 4.48 4.36 4.13 4.36 4.13
DERISI 2.26 2.02 2.14 2.26 2.49 2.26 2.38 2.38 2.49 2.38 2.26 2.49
EISEN 6.05 6.05 6.05 6.05 5.86 6.43 6.81 6.24 6.43 6.43 6.05 6.43
EXPR 5.42 4.83 5.18 5.30 4.83 5.54 5.54 5.18 5.54 5.42 5.18 5.42
GASCH1 5.56 5.79 5.67 5.91 5.44 5.67 6.03 6.26 5.79 5.79 6.26 6.03
GASCH2 4.00 4.24 4.83 4.95 4.12 4.00 4.12 4.36 4.24 3.53 4.24 4.59
SEQ 7.74 7.74 7.51 7.85 8.19 7.28 7.96 7.17 7.96 7.39 7.51 8.42
SPO 2.27 2.15 2.15 2.51 2.39 2.27 2.51 2.51 2.87 2.27 2.39 2.63
DIATOMS 53.71 54.68 50.16 51.29 53.23 52.10 49.35 48.23 52.90 52.58 46.61 47.26
ENRON 19.53 18.52 17.85 19.87 19.87 20.20 20.54 20.20 19.53 20.20 19.53 19.87
IMCLEF07A 86.97 87.03 86.27 86.60 87.00 87.33 86.50 86.70 87.07 86.90 87.00 86.83
IMCLEF07D 85.93 85.80 85.87 85.73 85.60 86.50 85.87 85.90 85.87 85.83 86.10 85.50

the diagonals; ii) the neural network predicts the edges in the path, as opposed to the vertices,
resolving ambiguities in the previous task (note that a set of vertices can might ambiguously encode
more than one path). Each vertex is assigned a cost corresponding to the type of the underlying
terrain (e.g., earth has lower cost than water). The minimum cost path between the top left and the
bottom right vertices of the grid is encoded as an indicator matrix, and serves as a label.

We use Graphillion3 to compile the path constraint, limiting our constraint to the set of paths whose
length is less than 29, as determined on the training set.

As in [60] we use a ResNet18 [36] with FIL optionally with LSL as a baseline. Given the largest size
of the compiled constraint circuit cK in this case 1010, we use a two-circuit implementation of SPL.
We use the identity function as our gating function and do a grid search over only the number of
mixtures in the range {2, 4, 8} in our model, keeping all other hyperparameters as proposed in [60].

D.4 A study on the effect of overparameterization in SPL

We now illustrate the effect that overparameterization has on the performance of the single-circuit
SPL. To that end, we performed an ablation study, comparing single-circuit SPLs comprising a
different number of circuit copies m for our replication strategy, a different number of layers in the
gating function, denoted by Gates, and the overparameterization factor k as used in Algorithm 1 in
our mixture multiplication strategy.

We report the exact match percentage of the predicted labels on the validation set of the 12 HMLC
datasets in Table 5. As a general trend, we can see that our overparameterization strategies pay off
and in general more mixture nodes help (k = 4) as well as using more replicas (m ≥ 4). The effect of
employing a deeper gating function is less striking instead, with a two-layer gating function achieving
highest performances on 9 datasets.

E Ethical Considerations

SPLs are meant as a module to be added on top of neural networks, and as such it does not significantly
alter the ethical risk of the underlying model and target application. One exception is if the symbolic
constraint is wrong (because e.g. it was encoded by a non-expert), in which case enforcing consistency
- as SPLs do - may lead to mistakes or bias in the model’s predictions.

3https://github.com/takemaru/graphillion
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GROUND TRUTH RESNET-18 SEMANTIC LOSS SPL (ours)

cost: 55.22 cost:∞ cost:∞ cost: 55.22

cost: 57.31 cost:∞ cost:∞ cost: 58.09

cost: 97.38 cost:∞ cost:∞ cost: 98.38

cost: 30.50 cost:∞ cost:∞ cost: 30.80

cost: 39.31 cost:∞ cost:∞ cost: 45.09

Figure 4: More examples of shortest path predictions in SPLs and competitors. SPLs always
deliver valid paths and even when these do not exact match the ground truth, they are very close in
terms of their global cost. Paths from the baselines might yield a higher Hamming score (as they have
more overlapping edges with the ground truth) but are invalid.
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F Timings

Table 6: A comparison of the timings of the different methods used throughout our experiments. All
timings are in seconds. The timings for HMLC datasets are obtained by averaging over the timings of
an entire epoch. All other timings are the average over three function calls. An empty cell, denoted
by a dash, indicates the method was not used for that dataset, and therefore its timing is unavailable.

DATASET COMPILATION LSL NESYENT
SPLS

PARAMETERIZE CROSS-ENTROPY MAP

CELLCYCLE 68 - - 0.03 0.41 0.74
DERISI 68 - - 0.01 0.21 0.37
EISEN 29 - - 0.01 0.16 0.28
EXPR 68 - - 0.00 0.11 0.19
GASCH1 68 - - 0.02 0.42 0.77
GASCH2 68 - - 0.03 0.40 0.74
SEQ 66 - - 0.01 0.22 0.36
SPO 67 - - 0.03 0.40 0.74
DIATOMS 8 - - 0.00 0.09 0.14
ENRON 0.04 - - 0.01 0.16 0.28
IMCLEF07A 0.35 - - 0.00 0.06 0.11
IMCLEF07D 0.08 - - 0.00 0.05 0.10
WARCRAFT 457 16.30 - 0.21 14.11 15.59
PREFERENCE [80] 0.024 0.035 0.00 0.00 0.01
SIMPLE PATH [80] 0.34 0.49 0.00 0.13 0.19
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