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Abstract
Neuro-symbolic AI bridges the gap between
purely symbolic and neural approaches to learn-
ing. This often requires maximizing the likeli-
hood of a symbolic constraint w.r.t. the neural net-
work’s output distribution. Such output distribu-
tions are typically assumed to be fully-factorized.
This limits the applicability of neuro-symbolic
learning to the more expressive auto-regressive
distributions, e.g., transformers. Under such distri-
butions, computing the likelihood of even simple
constraints is #P-hard. Instead of attempting to
enforce the constraint on the entire output distri-
bution, we propose to do so on a random, local
approximation thereof. More precisely, we op-
timize the likelihood of the constraint under a
pseudolikelihood-based approximation centered
around a model sample. Our approximation is
factorized, allowing the reuse of solutions to sub-
problems—a main tenet for efficiently computing
neuro-symbolic losses. Moreover, it is a local,
high-fidelity approximation of the likelihood, ex-
hibiting low entropy and KL-divergence around
the model sample. We evaluate our approach on
Sudoku and shortest-path prediction cast as auto-
regressive generation, and observe that we greatly
improve upon the base model’s ability to predict
logically-consistent outputs. We also evaluate on
the task of detoxifying large language models.
Using a simple constraint disallowing a list of
toxic words, we are able to steer the model’s out-
puts away from toxic generations, achieving SoTA
detoxification compared to previous approaches.

1. Introduction
Neuro-symbolic AI aims to consolidate purely statistical
approaches, chiefly using neural networks, with purely sym-
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Figure 1. Our approach in a nutshell. Given a data point x, we
approximate the likelihood of the constraint α (area under the
graph shown shaded in pink) with the pseudolikelihood (shown in
gray) of the constraint in the neighborhood of a sample (denoted
×), where m(α) denotes the region of the constraint support.

bolic approaches for learning and reasoning. It has thus
far shown great promise in addressing many of the short-
comings of both paradigms, developing scalable approaches
that learn from unstructured data while leveraging domain
knowledge to ensure the explainability, trusted behavior
as well as reduce the amount of labeled data required by
typically data-hungry deep neural networks.

More specifically, a common approach to neuro-symbolic
learning consists in injecting knowledge regarding the un-
derlying problem domain into the training process as an
auxiliary form of supervision. Such knowledge typically
takes the form of a sentence in logic, and relates the out-
puts of the neural network, delineating assignments to the
output variables that constitute a valid object from those
that do not. For instance, only an assignment to the cells
of a Sudoku puzzle such that each row, column, and 3× 3
square contain all of the digits from 1 to 9 constitutes a valid
Sudoku solution. Injecting such knowledge into training
is typically achieved by maximizing the probability of the
constraint—the sum of product of probabilities of all the
solutions to the constraint—w.r.t. to the network’s output
distribution. There the outputs of the neural network are
assumed to be conditionally independent given the learned
features, and therefore the distribution over the solutions of
the constraint assumed to be fully-factorized.

In this paper we move beyond fully-factorized output distri-
butions and towards auto-regressive ones, including those
induced by large language models such as GPT (Radford
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et al., 2019), where the output at any given time step depends
on the outputs at all previous time steps. Computing the
probability of an arbitrary constraint under fully-factorized
output distributions is #P-hard. Intuitively, the hardness of
the problem can be attributed to the possibly exponentially-
many solutions of the constraint. Under an auto-regressive
distribution, however, computing the probability of even a
single literal as a constraint is #P-hard (Roth, 1993). That is,
under auto-regressive distributions, the hardness of comput-
ing the probability of an arbitrary constraint is now due to
two distinct factors: the hardness of the logical constraint as
well as the hardness of the distribution. Throughout this pa-
per, we will assume the inherent hardness of the constraint
can be sidestepped: for many applications, we can come
up with compact representations of the constraint’s solu-
tions that are amenable to computing its probability under
the fully-factorized distribution efficiently (cf. Section 3.1).
When such compact representations are unavailable, we fall
back to approximate representations (Ahmed et al., 2023a).

Our contribution lies in proposing what is, to the best of
our knowledge, the first approach to learning with con-
straints under auto-regressive generative models. Con-
cretely, we approximate the likelihood of the constraint
w.r.t. the auto-regressive distribution with its probability in
a local pseudolikelihood distribution—a product of condi-
tionals—centered around a model sample. This leads to a
factorizable objective which allows us to efficiently com-
pute the probability of constraints by reusing solutions to
common sub-problems. Experiments show our approxima-
tion is low-entropy, allocating most of its mass around the
sample, and has low KL- divergence from the true distri-
bution. Intuitively, we want to stay close to the sample to
ensure high fidelity, while retaining a distribution to ensure
differentiability and maximum generality within tractability
bounds. Our approach is depicted in Figure 1.

Empirically, we start by evaluating our approach on the tasks
of solving a Sudoku puzzle and generating a shortest path
in a given Warcraft map where, conditioned on the input
puzzle (map, resp.), the neural network auto-regressively
generates a Sudoku solution (shortest path, resp.), taking
into account generations at previous time steps. We observe
that our auto-regressive models improve upon the non-auto-
regressive baselines, and that our approach leads to models
whose predictions are even more accurate, and even more
likely to satisfy the constraint. Lastly, we evaluated our
approach on the challenging task of detoxifying pretrained
large language models where the aim is to move the model’s
distribution away from toxic generations and towards non-
toxic ones without sacrificing the model’s overall language
modeling abilities. We show that, perhaps surprisingly,
using only a simple constraint disallowing a list of toxic
words, the model exhibits a great reduction in the toxicity of
the generated sentences, as measured using the perspective

API 1, at almost no cost in terms of the model’s language
modeling capabilities, measured in perplexity; this is, to the
best of our knowledge, the first use of logical constraints in
such a task. Our code will be made publicly available.

Contribution In summary, we propose approximating
the likelihood of the constraint w.r.t. the model parameters
with the pseudolikelihood of the constraint centered around
a model sample. Our approach can be thought of as pe-
nalizing the neural network for all the probability mass it
allocates to the local perturbations of a model sample that
volate the logical constraint. We empirically demonstrate
that our approach leads to models whose predictions are
more consistent with the constraint on the tasks of Sudoku
and Warcraft shortest path generation, and to less toxic gen-
erations on the task of large language models detoxification
prompted with the RealToxicityPrompts dataset.

2. Background
We first introduce needed background on propositional logic
and how neural networks induce distributions over output
structures. Afterwards, we motivate and define our loss.

2.1. Notation

We write uppercase letters (X , Y ) for Boolean variables
and lowercase letters (x, y) for their instantiation (Y = 0
or Y = 1). Sets of variables are written in bold uppercase
(X, Y), and their joint instantiation in bold lowercase (x,
y). A literal is a variable (Y ) or its negation (¬Y ). A
logical sentence (α or β) is constructed from variables and
logical connectives (∧, ∨, etc.), and is also called a (logical)
formula or constraint. A state or world y is an instantiation
to all variables Y. A state y satisfies a sentence α, denoted
y |= α, if the sentence evaluates to true in that world. A
state y that satisfies a sentence α is also said to be a model
of α. We denote by m(α) the set of all models of α. The
notation for states y is used to refer to an assignment, the
logical sentence enforcing the assignment, or the binary
output vector capturing the assignment, as these are all
equivalent notions. A sentence α entails another sentence β,
denoted α |= β, if all worlds that satisfy α also satisfy β.

2.2. A Probability Distribution over Possible Structures

Let α be a logical sentence defined over Boolean variables
Y = {Y11, . . . , Ynk}, where n denotes the number of time
steps in the sequence, and k denotes the number of possible
classes at each step.

The neural network’s outputs induce a probability distri-
bution p(·) over possible states y. However, the neural
network will ensure that, for each time step i, there is ex-

1https://www.perspectiveapi.com/
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actly one class being predicted in each possible state. That
is, exactly one Boolean variable {Yi1, . . . , Yik} can be set
to true for each time step i. We will use yi to denote that
variable Yij set to true in state y. More precisely, we let
yi ∈ {0, 1}k be the one-hot encoding of Yij being set to
1 among {Yi1, . . . , Yik}. The probability assigned by the
auto-regressive neural network to a state y is then

p(y) =

n∏
i=1

p(yi | y<i), (1)

where y<i denotes the prefix y1, . . . ,yi−1. The most com-
mon approaches (Mullenbach et al., 2018; Xu et al., 2018;
Giunchiglia and Lukasiewicz, 2020) to neuro-symbolic
learning assume the conditional independence of the net-
work outputs given the learned embeddings. More pre-
cisely, let f be a neural network that maps inputs x to
M -dimensional embeddings z = f(x). Under such as-
sumption, we obtain the fully-factorized distribution

p(y | z) =
n∏

i=1

p(yi | z). (2)

We no longer have a notion of ordering under the fully-
factorized distribution—and each possible p(yi = 1 | z)
is computed as σ(w⊤

ijz) where wi ∈ RM is a vector of
parameters and σ(x) is the softmax function. The appeal of
such distribution is that it enables the tractability of many
reasoning tasks, but the downside is that it dismisses any cor-
relation between the output labels. As we will show in our
experimental section (cf. Section 5), using auto-regressive
distributions, even simple ones such as LSTMs, already
outperforms a neural network where the labels are assumed

2.3. Neuro-Symbolic Losses

In neuro-symbolic learning, we often assume access to sym-
bolic knowledge connecting the different outputs of a neural
network, typically in the form of a constraint (or sentence)
α in Boolean logic. We are concerned with maximizing the
likelihood of the constraint α w.r.t. network’s parameters θ:

argmax
θ

pθ(α) = argmax
θ

Ey∼pθ
[1{y |= α}] (3)

= argmax
θ

∑
y|=α

pθ(y), (4)

where, with a slight abuse of notation, we omit the inputs
x. The expectation in Equation (3) quantifies how close the
neural network comes to satisfying the constraint. It does
so by reducing the problem of probability computation to
weighted model counting (WMC): summing up the models
of α, each weighted by its likelihood under p. The negative
logarithm of this expectation yields a loss function called
semantic loss (Xu et al., 2018). Depending on how one

chooses to compute said expectation, we recover different
approaches. T-norms (Medina Grespan et al., 2021) make
various assumptions, for instance, that the clauses of the con-
straint are independent (Rocktäschel et al., 2015). Ahmed
et al. (2022a) estimate the expectation by sampling, using
various gradient estimators for learning. Xu et al. (2018)
compute the objective exactly, leveraging knowledge com-
pilation techniques that exploit the structure embedded in
the solution space. They obtain a target representation (a
circuit) in which computing the expectation in Equation (3)
using dynamic programming is linear in the size of the tar-
get representation (the number of circuit edges). We note
that computing this expectation is, for arbitrary constraints,
#P-hard (Valiant, 1979a;b). Indeed the size of the compiled
circuit can grow exponentially in the constraint. In prac-
tice, we can obtain compact circuits for many constraints
of interest, or effectively decompose the constraints as an
approximation (Ahmed et al., 2023a).

3. Pseudo-Semantic Loss
Unfortunately, as previously mentioned, moving beyond
the fully-factorized distribution, we are faced with another
source of intractability: the hardness of the distribution w.r.t.
which the expectation in Equation (3) is being computed.
Assuming a deep generative model whose distribution p
can capture a Bayesian network distribution, the problem of
computing even a single marginal—i.e., the marginal proba-
bility of a single variable—is known to be #P-hard (Roth,
1993). This class of models includes the auto-regressive dis-
tribution. Intuitively, a constraint might have exponentially-
many solutions, yet lend itself nicely to reusing of solutions
to sub-problems, and therefore a tractable calculation of the
expectation in Equation (3). An example being the n choose
k constraint (Ahmed et al., 2023b), where the expectation
in Equation (3) can be computed in quadratic time under
the fully-factorized distribution, despite having a normally-
prohibitive number of solutions. Moving away from the
fully-factorized distribution, however, entails that in the
worst case, we would need to compute a sub-problem com-
binatorial number of times—for all possible sequences—for
the exponentially many solutions of the constraint.

To sidestep the intractability of the expectation in Equa-
tion (3), as a first step, we consider the pseudolikelihood
p̃(·) of a set of parameters given an assignment (Besag,
1975), as a surrogate for its likelihood i.e.,

p(y) ≈ p̃(y) :=
∏
i

p(yi | y−i), (5)

where y−i denotes y1, . . . ,yi−1,yi+1, . . . ,yn. Conse-
quently, we can consider the pseudolikelihood of a set of
parameters given a logical constraint α as a surrogate for its

3



A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints

true likelihood i.e.,

p(α) ≈ p̃(α) = Ey∼p̃ [1{y |= α}] =
∑
y|=α

p̃(y). (6)

Intuitively, the pseudolikelihood objective aims to measure
our ability to predict the value of each variable given a full
observation of all other variables. The pseudolikelihood ob-
jective is attempting to match all of the model’s conditional
distributions to the conditional distributions computed from
the data. If it succeeds in matching them exactly, then a
Gibbs sampler run on the model’s conditional distributions
attains the same invariant distribution as a Gibbs sampler
run on the true data distribution.

On its own, the above would still not be sufficient to ensure
the tractability of the expectation in Equation (3). Intuitively,
different solutions depend on different sets of conditionals,
meaning we would have to compute the probabilities of
many of the solutions of the constraint from scratch.

Instead, we compute the pseudolikelihood of the constraint
in the neighborhood of a model sample2

p̃(α) = Ey∼p̃ [1{y |= α}] (7)
≈ Ey∼p Eỹ∼p̃y [1{ỹ |= α}] (8)

= Ey∼p p̃y(α) = Ey∼p

∑
ỹ|=α

p̃y(ỹ), (9)

where
p̃y(ỹ) :=

∏
i

p(ỹi | y−i) (10)

which can be seen as the pseudolikelihood p̃(·) of an as-
signment in the neighborhood of a sample y. Crucially this
distribution is fully factorized, making it amenable to the
efficient computation of neuro-symbolic loss functions.

Definition 3.1 (Pseudo-Semantic Loss). Let α be a sentence
in Boolean logic, and let p̃y(·) be the pseudolikelihood
function parameterized by θ and centered around state y,
as defined in Equation (10). Then, we define the pseudo-
semantic loss between α and θ to be

LSL
pseudo(α, pθ) := − logEy∼p p̃y(α) (11)

= − logEy∼p

∑
ỹ|=α

p̃y(ỹ). (12)

Intuitively, our pseudo-semantic loss between α and pθ
can be thought of as penalizing the neural network for all
probability mass it allocates to the local perturbations ỹ of
the model sample y that violate the logical constraint α.

2We sample y1 conditioned on the beginning-of-sentence token,
then y2 conditioned on the sampled y1, followed by y3 conditioned
on both y1 and y2 and so on until the end-of-sentence token.

3.1. Tractable Expectation Computations

We appeal to knowledge compilation techniques—a class
of methods that transform, or compile, a logical theory into
a tractable circuit target form, which represent functions
as parameterized computational graphs. By imposing cer-
tain structural properties on them, we enable the tractable
computation of certain classes of probabilistic queries over
the encoded functions. Circuits then provide a language for
building and reasoning about tractable representations.

Logical Circuits More formally, a logical circuit is a di-
rected, acyclic computational graph representing a logical
formula. Each node n in the DAG encodes a logical sub-
formula, denoted [n]. Each inner node in the graph is ei-
ther an AND or an OR gate, and each leaf node encodes a
Boolean literal (Y or ¬Y ). We denote by in(n) the set of
n’s children, that is, the operands of its logical gate.

Structural Properties Circuits enable the tractable compu-
tation of certain classes of queries over encoded functions
granted that a set of structural properties are enforced.

A circuit is decomposable if the inputs of every AND gate
depend on disjoint sets of variables i.e. for α = β ∧ γ,
vars(β) ∩ vars(γ) = ∅. Intuitively, decomposable AND
nodes encode local factorizations over variables of the func-
tion. For simplicity, we assume that decomposable AND
gates always have two inputs, a condition enforceable on
any circuit in exchange for a polynomial increase in size.

A second useful property is smoothness. A circuit is
smooth if the children of every OR gate depend on the
same set of variables i.e. for α =

∨
i βi, we have that

vars(βi) = vars(βj) ∀i, j. Decomposability and smooth-
ness are a sufficient and necessary condition for tractable
integration over arbitrary sets of variables in a single pass,
as they allow larger integrals to decompose into smaller
ones (Choi et al., 2020).

Furthermore, a circuit is said to be deterministic if, for any
input, at most one child of every OR node has a non-zero
output i.e. for α =

∨
i βi, we have that βi ∧ βj = ⊥ for all

i ̸= j. Similar to decomposability, determinism induces a
recursive partitioning of the function, but over the support,
i.e. satisfying assignments, of the function, rather than the
variables. Determinism, taken together with smoothness and
decomposability, allows us to tractably compute a constraint
probability (Darwiche and Marquis, 2002). Given a smooth,
deterministic and decomposable logical circuit cα encoding
a constraint α3 we can compute the probability p(α) w.r.t. a
distribution p that factorizes by feeding the probability of
each literal at the corresponding leaf node and evaluating
the circuit upwards, taking sums at OR nodes and products

3Such a circuit can always be constructed, (Appendix A) al-
though it can grow exponentially in the worst case.
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at AND nodes. Figure 2 shows an example of computing
the probability of such a circuit.

Algorithm 1 LSL
pseudo(α; pθ)

1: Input: Logical constraint α and model pθ.
2: Output: Pseudo-semantic loss of α w.r.t. θ

3: // Obtain sample y from pθ
4: y ∼ pθ

5: // Get sequence length and num. of categories
6: seq, cats = y.shape()
7: // Expand the batch to contain all perturbations
8: // of y that are a Hamming distance of 1 away
9: y = y.expand(seq_len, num_cat)

10: y[:, range(seq), :, range(seq)] = range(cats)
11: // Evaluate expanded samples through model
12: log pθ = pθ(y).log_softmax(dim= − 1)

13: // Compute the conditional probabilities:
14: // log p̃θ[i][j] = pθ(yj |y−j)
15: log p̃θ = log pθ − log pθ.logsumexp(dim=−1)

16: // Compute the probability of α under p̃y
17: // by propagating the conditionals through cα
18: return − log p̃y(α)

3.2. The Algorithm

We will now give a walk through of computing our pseudo-
semantic loss. We note that our algorithm is implemented
in log-space to preserve numerical stability and uses Py-
Torch (Paszke et al., 2019). Our full algorithm is shown in
Algorithm 1. We sample an assignment y ∼ pθ from the
model (line 4). We compute the sample pseudolikelihood

log p̃θ(y) =
∑
i

log p(yi | y−i)

=
∑
i

log p(yi,y−i)− LSE
y′
i

log p(y′
i,y−i),

where LSE is the logsumexp function. That is, for every
element in the sequence, we need to marginalize over all
categories y′

i. This entails, for every element in the sam-
pled sequence, we need to substitute each of the categories
(lines 9-10) and compute the probability of the sample under
the model (line 12), obtaining sequence length × number
of categories sequences. Now we can compute the log-
conditional probabilities log p(yi | y−i). We marginalize
over the categories y′

i to obtain the log-marginal log p(y−i)
= LSEy′

i(log p(y
′
i,y−i)). We then condition the probabil-

ity of every sequence by subtracting the log-marginals i.e.,
log p(yi,y−i) − log p(y−i) (line 15). We use these con-
ditionals to compute the pseudolikelihood assigned by the
neural network to local perturbations of the model sample y
that satisfy the constraint (line 18). As per Section 3.1, we

can compute the pseudolikelihood of a constraint α locally
around the sample y by pushing the computed conditionals
at the respective input nodes of cα, propagating up through
the circuit, reading the value at the circuit root. Figure 2
shows a toy example run of our algorithm in non-log space.

4. Related Work
In an acknowledgment to the need for both symbolic as
well as sub-symbolic reasoning, there has been a plethora of
recent works studying how to best combine neural networks
and logical reasoning, dubbed neuro-symbolic reasoning.
The focus of such approaches is typically making probabilis-
tic reasoning tractable through first-order approximations,
and differentiable, through reducing logical formulas into
arithmetic objectives, replacing logical operators with their
fuzzy t-norms, and implications with inequalities (Kimmig
et al., 2012; Rocktäschel et al., 2015; Fischer et al., 2019).

Another class of neuro-symbolic approaches have their roots
in logic programming. DeepProbLog (Manhaeve et al.,
2018) extends ProbLog, a probabilistic logic programming
language, with the capacity to process neural predicates,
whereby the network’s outputs are construed as the proba-
bilities of the corresponding predicates. This simple idea
retains all essential components of ProbLog: the semantics,
inference mechanism, and the implementation. In a similar
vein, Dai et al. (2018) combine domain knowledge speci-
fied as purely logical Prolog rules with the output of neural
networks, dealing with the network’s uncertainty through
revising the hypothesis by iteratively replacing the output of
the neural network with anonymous variables until a consis-
tent hypothesis can be formed. Bošnjak et al. (2017) present
a framework combining prior procedural knowledge, as a
Forth program, with neural functions learned through data.
The resulting neural programs are consistent with specified
prior knowledge and optimized with respect to data.

Diligenti et al. (2017) and Donadello et al. (2017) use first-
order logic to specify constraints on outputs of a neural
network. They employ fuzzy logic to reduce logical for-
mulas into differential, arithmetic objectives denoting the
extent to which neural network outputs violate the con-
straints, thereby supporting end-to-end learning under con-
straints. Xu et al. (2018) introduced semantic loss, which
circumvents the shortcomings of fuzzy approaches, while
still supporting end-to-end learning under constraints. More
precisely, fuzzy reasoning is replaced with exact probabilis-
tic reasoning, made possible by compiling logical formulae
into structures supporting efficient probabilistic queries.

Lastly, there has recently been a plethora of approaches
ensuring consistency by embedding the constraints as pre-
dictive layers, including semantic probabilistic layers (SPLs)
(Ahmed et al., 2022b), MultiplexNet (Hoernle et al., 2022)
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pθ ∼ abc
expand−−−→

{
abc abc abc
¬abc a¬bc ab¬c

eval.−−−−→
{

p(abc) = 0.13 p(abc) = 0.13 p(abc) = 0.13
p(¬abc) = 0.15 p(a¬bc) = 0.21 p(ab¬c) = 0.16

norm.−−−−→
{

p(a|bc) = 0.46 p(b|ac) = 0.38 p(c|ab) = 0.45
p(¬a|bc) = 0.54 p(¬b|ac) = 0.62 p(¬c|ab) = 0.55

0.71

0.38 0.33

C

¬C

0.45

0.55

0.84 1.0 0.33

0.33

B ¬B
0.38 0.62

A ¬A
0.46 0.54

0.38
0.46

1.0
1.0

Figure 2. An example of our pipeline. (Left) We start by sampling an assignment from the model pθ . Our goal is to compute the
pseudolikelihood of the model sample—the product of the sample’s conditionals. We start by expanding the model sample to include
all samples that are a Hamming distance of 1 away from the sample. We proceed by (batch) evaluating the samples through the model,
obtaining the joint probability of each sample. We then normalize along each column, obtaining the conditionals. (Right) A logical circuit
encoding constraint (Cat =⇒ Animal) ∧ (Dog =⇒ Animal). To compute the pseudolikelihood of the constraint in the neighborhood
of the sample abc, we feed the computed conditional at the corresponding literals. We push the probabilities forward, taking products at
AND nodes and sums at OR nodes. The number accumulated at the root of the circuit is the pseudolikelihood of the constraint in the

and HMCCN (Giunchiglia and Lukasiewicz, 2020). Much
like semantic loss (Xu et al., 2018), SPLs maintain sound
probabilistic semantics, and while displaying impressive
scalability to real world problems, but might struggle with
encoding harder constraints. MultiplexNet is able to encode
only constraints in disjunctive normal form, which is prob-
lematic for generality and efficiency as neuro-symbolic tasks
often involve an intractably large number of clauses. HM-
CCN encodes label dependencies as fuzzy relaxation and is
the current state-of-the-art model for hierarchical multi-label
classification (Giunchiglia and Lukasiewicz, 2020), but, sim-
ilar to its recent extension (Giunchiglia and Lukasiewicz,
2021), is restricted to a certain family of constraints.

Throughout this paper, we assumed that the constructing
a logical circuit from a logical formula was easy. This is,
in general, not the case. Ahmed et al. (2023a) offer an ap-
proach, by assuming the sub-problems are independent, and
iteratively relaxing the independence assumption according
to the sub-problems that most violate that assumption as
measured using the conditional mutual information.

5. Experimental Evaluation
We evaluate our pseudo-semantic loss on several tasks, span-
ning a number of domains. We start by evaluating on War-
craft shortest-path finding, where we are given an image of
a Warcraft tilemap, and are tasked with auto-regressively
generating one of the potentially many minimum-cost paths
between two end points conditioned on the map, where
the cost is determined by the underlying cost of the tiles
spanned by the path. We move on to evaluating on the
classic, yet challenging, task of solving a 9 × 9 Sudoku
puzzle where, once again, the generation proceeds auto-
regressively, conditioned on the input Sudoku puzzle. It is

worth noting that such tasks have been considered as a test
bed for other neuro-symbolic approaches before, but never
from an auto-regressive generation perspective.

We also evaluate on the task of large language models
(LLMs) detoxification. In this task, we are interested in
the generations produced by an LLM when presented by a
prompt input by the user. More specifically, we are inter-
ested not only in how good these models are at the modeling
aspect, but also how toxic their outputs might be, a measure
which includes sexual explicitness, identity attacks, and pro-
fanity, among others. Our goal in this task is then to shift
the model’s distribution away from toxic generations, and
toward non-toxic ones, all while maintaining its original abil-
ity to model text. We believe this to be a timely and impor-
tant problem due to their recent prevalence and widespread
usage coupled with the fact that previous work (Gehman
et al., 2020) has found non-negligible amounts of toxic,
harmful, and abusive text in the corpora used to train LLMs.

Lastly, we evaluated our approximation’s fidelity by com-
paring the entropy of our local approximation against that of
the GPT-2 distribution, as well as how close our approxima-
tion is to the true likelihood in the proximity of the sampled
data point as measured by the KL-divergence between the
two. All experimental details, hardware specifications, as
well as training details are provided in the appendix.

Warcraft Shortest Path For this task, we follow the exper-
imental setting set forth by (Pogančić et al., 2020), where
our training set consists of 10, 000 terrain maps curated us-
ing Warcraft II tileset. Each map encodes a 12 × 12 grid
superimposed on a Warcraft terrain map, where each ver-
tex is weighted according to the cost of the tile, which in
turn depends on type of terrain it represents e.g., earth has
lower cost than water. These costs are not presented to the
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Figure 3. Example inputs and groundtruth labels for two of the three tasks considered in our experimental evaluation. (Left)
Example Warcraft terrain map and a possible minimum-cost shortest path. (Right) Example Sudoku puzzle and its corresponding solution.

network. The task is then to generate a minimum-cost path
from the upper left to the lower right vertices, where the cost
of a path is defined as the sum of costs of the vertices visted
by the edges along the path, and the minimum-cost path is
not unique, i.e., there exists many paths with the minimum
cost, and are all considered correct. The minimum cost path
between the top left and bottom right vertices is encoded as
an indicator matrix, and serves as a label. Figure 3 shows
an example input to the network, and a possible path.

We use a CNN-LSTM model, where, presented with an
image of a terrain map, we use a ResNet18 (He et al., 2016)
to obtain a 128 image embedding, which is then passed on
to an LSTM with a single layer, a hidden dim of size 512,
and at every time step predicts the next edge in the path
conditioned on the image embedding and previous edges.
The constraint being maximized by pseudo-semantic loss in
this task is that the predicted edges form a valid path.

As previously established (Xu et al., 2018; Ahmed et al.,
2022c;b), the accuracy of predicting individual labels is of-
ten a poor indicator of the performance in neuro-symbolic
settings, where we are rather more interested in the accu-
racy of our predicted structure object exactly matching the
groundtruth label , e.g., is the prediction a shortest path?, a
metric which we denote “Exact” in our experiments, as well
as the accuracy of predicting objects that are consistent with
the constraint, e.g., is the prediction a valid path?, a metric
denoted “Consistent”. Our results are shown in Table 2.

As alluded to repeatedly throughout the course of the paper,
the first observation is that using an auto-regressive model
to predict the shortest path in the grid, even a simple single
layer LSTM outperforms both a ResNet-18, as well as a
ResNet-18 trained with semantic loss, improving the exact
match from 55.00% and 59.40% to 62.00%, and greatly im-
proving the consistency of the predicted paths to 76.00%, an
improvement by almost 15%. We also see using our pseudo-
semantic loss, denoted PSEUDOSL, improves the exact and
consistent accuracies to 66.00% and 79.00%, respectively.

Sudoku Next, we consider the task of predicting a solution
to a given Sudoku puzzle. Here the task is, given a 9 × 9

Table 1. Our experimental results on Sudoku.
Test accuracy % Exact Consistent

ConvNet 16.80 16.80
ConvNet + SL 22.10 22.10

RNN 22.40 22.40
RNN + PSEUDOSL 28.20 28.20

Table 2. Our experimental results on Warcraft.
Test accuracy % Exact Consistent

ResNet-18 55.00 56.90
ResNet-18 + SL 59.40 61.20

CNN-LSTM 62.00 76.60
CNN-LSTM + PSEUDOSL 66.00 79.00

partially-filled grid of numbers to fill in the remaining cells
such that the entries each row, column, and 3× 3 square are
unique i.e., each number from 1 to 9 appears exactly once.

We use the dataset provided by Wang et al. (2019), consist-
ing of 10K Sudoku puzzles, split into 9K training examples,
and 1K test samples, all puzzles having 10 missing entries.

As our baseline, we use a 5-layer RNN with a hidden di-
mension of 128, tanh non-linearity and a dropout of 0.2. At
each time step, the RNN predicts the next cell given as input
a one-hot encoding of the previous cell, and conditioned
on the partially filled Sudoku. The constraint being maxi-
mized here is that entries in each row, column, and 3 × 3
squares are unique, each containing each number from 1 to
9 appears exactly once. Our results are shown in Table 1.
In line with our previous experiment, we observe that, one
again, a simple RNN outperforms the non-auto-regressive
model, as well as the same model augmented with semantic
loss, although the difference is not that big with regards to
semantic loss. Augmenting that same auto-regressive model
with pseudo-semantic loss, however, increases the gap to a
convolutional network, and the same convolutional network
augmented with semantic loss to 11.40 and 7.10, resp.

LLM detoxification Lastly, we consider the task of LLM

7
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Table 3. Evaluation of LM toxicity and quality across different detoxification methods GPT-2 with 124 million parameters. Model toxicity
is evaluated on REALTOXICITYPROMPTS benchmark through Perspective API. Full refers to the full set of prompts, Toxic and Nontoxic
refer to the toxic and nontoxic subsets of prompts. PPL refers to the model perplexity (exponentiated average log-likelihood; a measure of
language modeling quality) on the WebText validation set.

Models Avg. Toxicity (↓) Valid.
Full Toxic Nontoxic PPL

Domain-
Adaptive
Training

GPT-2 0.12± 0.15 0.67± 0.12 0.10± 0.11 24.52
SGEAT 0.07± 0.09 0.64± 0.11 0.06± 0.08 25.93
PseudoSL 0.07± 0.09 0.61± 0.09 0.07± 0.09 26.60

detoxification. That is, we investigate the effectiveness of
logical constraints, enforced using pseudo-semantic loss, at
steering the model away from toxic prompted-generations.
We choose a very simple constraint to be minimized by
pseudo-semantic loss throughout this task, namely we min-
imize the probability that any of a list of profanity, slurs,
and swear words4 appear as part of the model generations.
Following previous work (Gehman et al., 2020; Wang et al.,
2022), we evaluate on the REALTOXICITYPROMPTS, a
dataset of almost 100k prompts ranging from non-toxic, as-
signed a toxicity score of 0, to very toxic, assigned a toxicity
score of 1. We focus on GPT-2 (Radford et al., 2019) as a
base model for detoxification. As is customary, (Gehman
et al., 2020; Wang et al., 2022), we use Perspective API, an
online automated model for toxic language and hate speech
detection, to score the toxicity of our predictions. It returns
scores in the range 0 to 1.0, corresponding to non-toxic on
the one end, and extremely toxic on the other. Though not
without limitations, studies (Wang et al., 2022; Welbl et al.,
2021) have shown that the toxicity scores from Perspective
API are strongly correlated with human evaluations.

We compare off-the-shelf GPT-2 against SGEAT (Wang
et al., 2022)—which finetunes GPT-2 on the non-toxic por-
tion of its self generation through performing unconditional
text generation and retaining only generations with toxic-
ity < 0.5—and against SGEAT augmented with pseudo-
semantic loss. We report the average toxicity on all genera-
tions, the toxic portion, and the non-toxic portion, averaged
over 5 different seeds. To understand the impact of detoxifi-
cation, we also evaluate the quality of the finetuned LLM
using perplexity on the validation split of WebText.

Our results are shown in Table 3. It was previously shown
that SGEAT lowers the toxicity of the generations produced
by GPT-2, albeit at a slight cost in terms of perplexity. This
is confirmed by our numbers, where we see that SGEAT
reduces the toxicity across all data splits. We also see that
using pseudo-semantic loss along side SGEAT greatly im-
proves the average toxicity of the generations considered to
be toxic (i.e., scored as > 0.5 by Perspective API) from 0.64

4List downloaded from here.

to 0.61, as much as the improvement achieved by SGEAT
compared to GPT-2, at a slight increase in perplexity. We
note that this is to be expected: the validation set on which
we evaluate our perplexity contains toxic-sentences. By de-
creasing the probability of these sentences under our model,
we are less well aligned to GPT-2, at least on the toxic
generations, and therefore achieve a higher perplexity.

Fidelity evaluation Lastly, we evaluated the fidelity of our
approximation. We compare the entropy of our approximate
distribution to the true distribution. We want this quantity to
be low, as it would mean our approximation only considers
assignments centered around the model sample. We also
evaluate the KL-divergence of our approximate distribution
from the true distribution in the neighborhood of a model
sample. We want this quantity to also be low, as it corre-
sponds to how faithful our approximation is to the true distri-
bution in the neighborhood of the model sample. Intuitively,
the KL-divergence measures the extra bits needed to encode
samples from our approximation using a code optimized for
GPT-2, and is zero when the two distributions coincide. We
find the entropy of GPT-2 is 80.89 bits while the entropy
of our approximation is, on average, 35.08 bits. We also
find the KL-divergence DKL(p̃y || pθ) is on average 4.8
bits. That is we only need 4 extra bits on average to encode
the true distribution w.r.t. our approximation. Intuitively,
we want to stay close to the sample to ensure high fidelity,
while retaining a distribution to ensure differentiability and
maximum generality within tractability bounds.

6. Conclusion
In conclusion, we proposed pseudo-semantic loss, a neuro-
symbolic loss for learning with logical constraints in deep
generative models. Instead of attempting to enforce the
constraint on the entire distribution, our approach does so
on a local distribution centered around a model sample. Our
approach factorizes, allowing us to efficiently compute such
an approximation. Our approach is able to greatly improve
the accuracy and consistency of the baselines on structured-
output prediction tasks, and is more effective at reducing
the toxicity of GPT-2 compared to adaptive SoTA.
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A. Circuit Construction
Any logical formula can be compiled into a smooth, deter-
ministic and decomposable logical circuit: every disjunction
factorizes the solution space into mutually exclusive events
whereas every conjunction factorizes the function into two
sub-functions over disjoint sets of variables. Here is a sim-
ple albeit potentially sub-optimal recipe: order variables
lexicographically. Alternate OR and AND nodes. An OR
node branches on the current variable being true or false, and
has two children: a left (right) AND node whose children
are the positive (negative) literal and the subtree correspond-
ing to substituting the positive (negative) literal into the
formula. Repeat while variables remain. We use the PySDD
compiler (Meert, 2017) which outputs circuits satisfying the
above properties, in addition to structured-decomposability,
which asserts that functions, or constraints, over the same
variables decompose in the same manner. We say the above
recipe is potentially sub-optimal as we use a fixed variable
order. In general, there can be an exponential gap in the
size of the logical circuit obtained using the worst and best
variable order. Finding the best such order is, in general, NP-
hard. However, in practice, compilers (PySDD included)
use search heuristics that yield demonstrably-good orders.

B. Language Detoxification
The experiments were run on a server with an AMD EPYC
7313P 16-Core Processor @ 3.7GHz, 2 NVIDIA RTX
A6000, and 252 GB RAM. Our LLM detoxification ex-
periments utilized both GPUs using the Huggingface Accel-
erate (Gugger et al., 2022) library.

In order to construct our constraint, we start with the list
of bad words5 and their space-prefixed variants6. We then
tokenize this list of augment bad words, yielding 871 unique
possibly-bad tokens (some tokens are only bad when con-
sidered in context with other tokens), in addition to an extra
catch-all good token to which remaining tokens map to. Our
constraint then disallows all sentences containing any of the
words on the augmented list, starting at any of the sentence
locations 0 through len(sentence) - len(word). The code to
process the list of words, the code to create the constraint as
well as the constraint itself will be released with our code.

Similar to SGEAT (Wang et al., 2022), the SoTA domain-
adaptive training approach to detoxification, we finetune our
model on self-generations as opposed to any external dataset.
More specifically, we unpromptedly generate 100k using
GPT-2 through Hugging Face (Wolf et al., 2020), which are
then filtered through Perspective API, keeping only the 50%
most nontoxic portion of the generations. We leverage the

5List downloaded from here.
6A word will be encoded differently whether it is space-prefixed

or not.

curated nontoxic corpus to further fine-tune the pre-trained
LLM with standard log-likelihood loss and adapt it to the
nontoxic data domain. Unlike the two other tasks where we
use model samples, we use the toxic portion of the corpus
to which we apply our newly proposed pseudo-semantic
loss. The intuition here is that the local perturbations of
a toxic sentence are also toxic, and these are exactly the
assignments whose probability we would like to penalize.

Our training script is adapted from that provided by Hug-
ging Face7. We use a batch size of 16, a learning rate of
1e-5 with the AdamW optimizer (Loshchilov and Hutter,
2017) with otherwise default parameters. We did a grid
search over the pseudo-semantic loss weight in the values
{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 4, 8}. All other hy-
perparameters were left unchanged. Similar to (Wang et al.,
2022), we use use nucleus sampling with p = 0.9 and a tem-
perature of 1 during generation. A randomized 10k portion
of RealToxicityPrompts dataset was used for early stopping.

For only this task, our pseudo-semantic loss implementa-
tion makes use of top-k to construct the pseudo-likelihood
distribution (lines 7-12 in Algorithm 1) due to the lack of
computational resources. We constructed our distribution
using only the top-10 good and the top-470 toxic words.

C. Sudoku
The experiments were run on a server with an AMD EPYC
7313P 16-Core Processor @ 3.7GHz, 2 NVIDIA RTX
A6000, and 252 GB RAM. Training utilized only one GPU.

We follow the experimental setting and dataset provided by
Wang et al. (2019), consisting of 10K Sudoku puzzles, split
into 9K training examples, and 1K test samples, all puzzles
having 10 missing entries. Our model consists of an RNN
with an input size of 9, a hidden dimension of 128, 5 layers,
a tanh nonlinearity and a dropout of 0.2. We used Adam
with default PyTorch parameters and a learning rate of 3e-4.
We did a grid search over the pseudo-semantic loss weight
in the values {0.01, 0.05}. Our constraint disallows any
solution in which rows, columns and square are not unique.

D. Warcraft Shortest Path
The experiments were run on a server with an AMD EPYC
7313P 16-Core Processor @ 3.7GHz, 2 NVIDIA RTX
A6000, and 252 GB RAM. Training utilized only one of
the two GPUs. We follow the experimental setting and
dataset provided by (Pogančić et al., 2020). Our training set
consists of 10, 000 terrain maps curated using Warcraft II
tileset. We use a CNN-LSTM model for this task. Precisely,
a ResNet-18 encodes the map to an embedding of dimension
128. An LSTM with 1 layer, and a hidden size of 512 then

7Downloaded from here.
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predicts the next edge in the shortest path conditioned on the
input map and all previous edges. We used Adam with the
default PyTorch parameters and a learning rate of 5e-4. We
did a grid search over the pseudo-semantic loss weight in
the values {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. Our con-
straint disallows any prediction not a valid path connecting
the upper left and lower right vertices.

E. Broader Impact
The work presented in this paper, pseudo-semantic loss, has
a significant potential for positive societal impact. Neuro-
symbolic learning moves us closer to models whose be-
havior is trustworthy, explainable and fair. This extends
to critical domains such as autonomous driving, medical
diagnosis and financial planning to name a few. Large lan-
guage models have recently seen an exponential increase
in popularity, crossing the threshold of being mere research
tools into products that are utilized by the general pub-
lic. Unfortunately, the same expressivity that renders these
models so powerful also puts them outside the reach of cur-
rent neuro-symbolic approaches. Our proposed approach,
pseudo-semantic loss, tackles exactly this problem, and does
so efficiently. Namely, it brings neuro-symbolic learning,
and the promise of trustworthy, explainable and fair models
to LLMs. And we have shown the merits of our approach
when applied to LLM detoxification. We must, however,
also be cognizant of the potential negative societal impacts.
More precisely, in very much the same way that our ap-
proach can be used to steer the model away from toxic, or
generally inconsistent, outputs it can also be used to steer
the model towards toxic and harmful generations.

F. Limitations
Our approach assumes access to hard symbolic knowledge.
Such knowledge is not always available, and is not always
easy to capture and express symbolically. Our approach also
currently only supports hard symbolic knowledge, whereas
often times we might be interested in distributional soft
constraints that only hold in expectation. Our approach,
while tractable, requires a sufficient amount of memory in
order to construct the local distribution centered around
the model sample. Lastly, our approach approximates the
distribution of the model locally, and although we have
empirically shown it’s effectiveness on three different tasks,
it’s not clear what guarantees one can derive in general.
We view addressing all of the above limitations as very
interesting and impactful future endeavors.
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