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Abstract
We study the problem of entity-relation ex-
traction in the presence of symbolic domain
knowledge. Such knowledge takes the form
of an ontology defining relations and their per-
missible arguments. Previous approaches set
out to integrate such knowledge in their learn-
ing approaches either through self-training,
or through approximations that lose the pre-
cise meaning of the logical expressions. By
contrast, our approach employs semantic loss
which captures the precise meaning of a logi-
cal sentence through maintaining a probability
distribution over all possible states, and guid-
ing the model to solutions which minimize any
constraint violations. With a focus on low-data
regimes, we show that semantic loss outper-
forms the baselines by a wide margin.

1 Introduction

With an abundance of textual data being produced,
relation extraction — the task of identifying rela-
tions between named entities — offers a means
by which structured knowledge can be extracted
from unstructured text and used to populate rela-
tional databases. However, such relation extraction
models typically require large amounts of labeled
data, which can be hard and expensive to acquire.
Therefore, increasing attention has been going into
semi-supervised learning with the hope that, given
enough knowledge about the structure of the prob-
lem, such approaches can be competitive with their
fully-supervised counterparts.

In this work, we take advantage of the domain
knowledge present when dealing with relational
data, and define a set of relations and their permis-
sible argument types (e.g., the relation kill, in its
literal sense, does not admit inanimate entity types
as either of its arguments). We encode such an on-
tology as Boolean logic sentences, the conjunction
of which we refer to as our constraint.

Using semantic loss (Xu et al., 2018), our ap-
proach maintains a probability distribution over all

states predicted by the model, and penalizes the
model for any probabilities it assigns to states vio-
lating the constraint. Calculating the probabilities
of each state is exact — capturing the precise mean-
ing of the logic expression — and efficient, only
adding a linear (in the size of the compiled circuit;
which is small in practice) overhead to our training.

While not the first to exploit unlabeled data un-
der general constraints for entity-relation extrac-
tion, our approach enjoys several advantages to
other commonly used approaches. The Constraint-
Driven Learning (CoDL) framework (Chang et al.,
2007) necessitates solving an integer linear pro-
gram (ILP) for every sample in the unlabeled set,
for every epoch, with the goal of providing the
model with pseudo-labeled examples that respect
the constraint, a computationally expensive pro-
cess. CoDL collapses the probability distribution
maintained by the model over all states to a single
point: the most probable state, often reinforcing
the model’s incorrect predictions.

Another class of approaches attempts to reduce
logical constraints into differentiable, arithmetic
objectives by substituting logical operators with
their fuzzy t-norms and logical implications with
simple inequalities. A downside of this fuzzy relax-
ation is that the logical sentences lose their precise
meaning as the learning objective becomes a func-
tion of the syntax of the logical expression rather
than its semantics.

Our experiments show how our approach of in-
jecting logical constraints into the learning process
offers significant improvements over the baselines,
leading to more logically consistent predictions.
We echo previous findings that the latter could be
augmented with constraints at inference using ILP
to further improve the performance. However, we
find that transductive training is competitive with
ILP, and could therefore be used as a proxy for
inference-time constraints, simplifying the training
pipeline. We make our code available online.
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α := (Kill =⇒ Persons ∧ Persono)
∧ (LivesIn =⇒ Persons ∧ Locationo)

Figure 1: An example constraint α in Boolean logic: a
relation Kill can only have a Person for both its subject
and its object. Similarly, a relation LivesIn can only
gave a Person as its subject and a Location as its object.

2 Related Work

Our work builds upon a body of literature on
semi-supervised approaches that use structural con-
straints as a source of indirect supervision, and have
been applied to several NLP tasks. Chang et al.
(2007) introduce the Constraint-Driven Learning
(CoDL) framework which improves the model by
generating feedback through labeling unlabeled ex-
amples subject to a hard constraint. Ganchev et al.
(2010) develop a CoDL-like approach, with the re-
laxation that constraints be satisfied in expectation,
and finds the best variational distribution satisfy-
ing these constraints. Along the same lines, the
generalized expectation framework (Mann and Mc-
Callum, 2007, 2008, 2010) specifies a set of linear
constraints and augments the log-likelihood objec-
tive with a penalty term: the expected deviation of
the model’s output from the constraint specified.

More in line with our work, various deep learn-
ing techniques have been proposed to enforce ei-
ther arithmetic constraints (Pathak et al., 2015;
Márquez-Neila et al., 2017) or logical constraints
(Rocktäschel et al., 2015; Hu et al., 2016; De-
meester et al., 2016; Stewart and Ermon, 2016;
Minervini et al., 2017; Diligenti et al., 2017; Don-
adello et al., 2017; Fischer et al., 2019) on the
output of a neural network, through reducing log-
ical constraints into differentiable, arithmetic ob-
jectives by replacing logical operators with their
fuzzy t-norms and logical implications with sim-
ple inequalities. While semantic loss is exact, and
captures the precise meaning of a logical sentence
regardless of its syntax, such fuzzy relaxations tend
to lose the precise meaning of the logical sentences
and consequently, the learning objective becomes
a function of the syntax rather than the semantics.

3 Methodology

Consider the following instance of the relation ex-
traction problem, with two possible relations: Kill
and LivesIn, and two possible entity types: Person
and Location. Consider the following sentence:

Oswald shot JFK

and assume the following model assignments: Os-
wald is predicted as a Person with probability 0.3
and a Location with probability 0.7; JFK is pre-
dicted as a Person with probability 0.1 and a Loca-
tion with probability 0.9; the relation is predicted
as Kill with probability 0.6, and as LivesIn with
probability 0.4.

Denote by a state any (subject, relation, object)
triple. We define the probability of a state to be
the product of probabilities of the classes in that
state i.e. the product of probabilities of the subject,
relation and object. More formally,

p((ei, rm, ej)) = pφ(ei)× pθ(rm)× pφ(ej)

for a subject i, a relation m, and an object j, where
φ and θ denote the parameters of the entity recogni-
tion and relation extraction modules, respectively.
This induces a probability distribution over all pos-
sible states, with the sum of probabilities of all
possible states adding to 1. Continuing with our
example, given the model predictions above, we
compute the following distribution, where each row
denotes a state and its corresponding probability:

state prob state prob

(Per, Kill, Per) 0.02 (Loc, Kill, Loc) 0.38
(Per, LivesIn, Loc) 0.11 (Per, LivesIn, Per) 0.01
(Per, Kill, Loc) 0.16 (Loc, LivesIn, Per) 0.03
(Loc, Kill, Per) 0.04 (Loc, LivesIn, Loc) 0.26

Now consider the constraint in Figure 1. As per
the constraint, the relation Kill can only co-occur
with a subject Person and an object Person. Sim-
ilarly, the relation LivesIn can only co-occur with
a subject Person and an object Location. That is,
subject to our constraint, the only valid states are
(Per, Kill, Per) and (Per, LivesIn, Loc). Following
Xu et al. (2018), we seek to maximize the prob-
ability the model assigns to such valid states, or
equivalently, minimize the probability of predicting
an invalid state. Our loss is then defined in terms
of the probability that the constraint is satisfied: a
summation over the probabilities of all valid states.
Taking the negative logarithm, we get a loss term
proportional to that of the cross-entropy loss, and
attains a value of 0 when the constraint is always
satisfied. Formally, the semantic loss function is

Ls(α,p) = − log
∑

(ei,rm,ej) sat α

p((ei, rm, ej)),

(1)



where α denotes our constraint, p denotes a vector
of probabilities over states, and (ei, rm, ej) sat α
denotes that a state with the subject i, relation
m and object j is valid under the constraint α.
Consequently, our example would yield a loss of
− log(0.02 + 0.11) = − log(0.13) = 2.04.

3.1 Architecture

Similar to prior works in the literature on entity-
relation extraction (Miwa and Sasaki, 2014; Miwa
and Bansal, 2016; Gupta et al., 2016; Li et al., 2016,
2017; Zhang et al., 2017; Adel and Schütze, 2017;
Bekoulis et al., 2018b,a; Nguyen and Verspoor,
2019; Li et al., 2019), we adopt a end-to-end ap-
proach to recognizing the named entities in a sen-
tence along with their pairwise relations. Contex-
tual embeddings are first produced for every token
in the sentence. These are then fed to a named
entity recognition (NER) module, which outputs a
vector of probabilities denoting the per-class proba-
bility. The output of the NER module is then passed
as an input, along with the contextual embeddings,
as well as subject and object index embeddings, to
a relation classifier, which outputs the correspond-
ing relation. We detail the architecture of each of
the aforementioned modules below.

Contextualized Encoder Our model en-
codes words wi of an input sequence
s = (w1, w2, . . . , wn) using the pretrained
BERTBase model (Devlin et al., 2019) to produce
a sequence of embedding vectors, e1, e2, . . . , en,
where ei denotes the contextualized word
embedding of token wi.

Named Entity Recognition and Relation Ex-
traction Modules As we assume we only have
a small labeled set, we fix the contextualized en-
coder, and use BERT + LSTM as proposed in Wad-
den et al. (2019), where the LSTM parameters are
trained together with task specific layers. Both the
Named Entity Recognition (NER) and Relation Ex-
traction (RE) modules are provided with a list of
contextualized embeddings as their input, with the
RE module additionally provided the NER predic-
tions. We jointly minimize the NER cross-entropy
loss, RE cross-entropy loss and the semantic loss.

4 Experiments

Dataset and Evaluation Criteria We conduct
experiments using the Automatic Content Extrac-
tion (ACE) 2005 corpus (Walker et al., 2006) that

defines an ontology over 7 entities and 18 relations.
For each method, we report two evaluation metrics:
(1) the average of the F1-scores of the relations
and their arguments, which we denote avg-f1, and
(2) the F1-score of relation triples, which we de-
note tri-f1, where a triple is considered correct only
if both the relation and its arguments have been
correctly classified.

We compare our proposed approach against
three different baselines:

base follows the model detailed in Section 3,
but does not make use of unlabeled data (i.e., the
weight of semantic loss is set to 0).

CoDL denotes the Constraint Driven Learning
framework by Chang et al. (2007). Given a small
labeled set and a large unlabeled set, the base
model is trained on the labeled set until conver-
gence and then repeatedly: (1) Uses constraints
and the learned model to label the instances in the
unlabeled set. (2) Updates the model using the
newly labeled data. We attempted to introduce con-
straints at different training stages, and achieved
the best results by finetuning the best-performing
model checkpoint. min(1, rv / lv)

Product T-norm follows the approach by Rock-
täschel et al. (2015) which, similar to semantic loss,
aims to maximize the probability that the model
predictions satisfy a logical constraint. More specif-
ically, the probability of any logical formula is com-
puted recursively as:

[¬A] = 1− [A]
[A ∧ B] = [A][B]
[A ∨ B] = [A] + [B]− [A][B]

[A =⇒ B] = [A]([B]− 1) + 1

where the [ ] operator denotes the probability of
the logical formula under the learned model. The
above computation is exact when the arguments of
the logical expression do not overlap. Otherwise,
it can be thought of as an approximation, and be-
comes a function of the syntax, as well as the actual
meaning of the logical formula. For example, the
following constraints admit different probabilities:

[¬Kill ∨ Per ∧ Per] = 0.42,

[Kill =⇒ Per ∧ Per] = 0.61.

This is a problem, especially in case of larger con-
straints, from which semantic loss does not suffer.



# Labels 3 5 10 15 25 50 75
Inf N I T N I T N I T N I T N I T N I T N I T

base 35.2 49.3 35.2 38.3 54.3 38.3 45.0 58.8 45.0 46.6 60.6 46.6 55.0 65.5 55.0 60.3 70.1 60.3 63.5 73.0 63.5
CoDL 38.6 52.2 36.6 44.1 56.3 45.3 48.5 60.3 49.0 50.0 61.9 49.6 58.3 68.4∗ 55.7 62.9 70.6 63.1 66.5 73.9 65.3
t-norm 39.0 50.7 40.4 45.1 55.8 42.3 50.3 58.1 51.4 53.3 62.1 56.4 60.4 67.2 59.2 63.9 70.4 65.8 66.5 73.3 67.0
sl (ours) 44.3 55.2∗ 45.4 52.4 60.9∗ 50.5 55.2 62.9∗ 56.4 58.9 66.0∗ 60.1 60.0 68.0 62.5 65.4 73.2∗ 68.1 67.2 74.2∗ 68.2

base 4.9 7.6 4.9 7.2 11.9 7.2 13.7 18.9 13.7 15.1 19.0 15.1 21.6 26.5 21.6 29.0 33.6 29.0 33.0 37.4 33.0
CoDL 7.7 8.9 4.8 12.8 14.2 12.3 16.2 17.7 17.3 17.6 18.4 17.7 27.0 28.3 22.4 32.9 34.6 32.4 37.2 38.5 35.3
t-norm 8.9 9.5 9.5 14.5 15.5 10.2 19.2 14.2 19.6 21.8 23.1 24.9 30.2 30.7 29.4 34.1 35.6 37.3 37.4 38.6 39.5
sl (ours) 12.9 14.0 14.1∗ 20.3 22.3∗ 18.5 24.6 25.6 26.2∗ 30.1 31.3 31.6∗ 29.2 31.9 33.6∗ 36.5 39.4 40.5∗ 38.8 42.0∗ 40.3

Table 1: Experimental results for joint entity-relation extraction on ACE05. The upper and lower sub-tables
correspond to avg-f1 and tri-f1, respectively. Inf indicates no constraints during inference (N), use of ILP during
inference (I) or the transductive setting (T). We averages across 3 different runs. Best results in a column and block
are boldface and asterisked, respectively. We point out that better results in one metric do not translate to better
results in the other, and focus on tri-f1 in our analysis. Full results, including std. error, available in the appendix.

Figure 2: Comparing the performance (tri-f1) of the dif-
ferent methods of injecting constraints to the baseline.

5 Results and Discussion

Q1. Is injecting constraints into the learning
process at all beneficial? Our results show that in-
jecting logical constraints into the learning process
is critical. This effect is especially pronounced in
settings with very scarce labeled data. For instance,
in settings with only 3 labeled samples per class,
CoDL, product t-norm and semantic loss are seen
to improve upon the baseline by 2.8%, 5.3% and
8.0%, respectively, as can be seen in Table 1.

Q2. Should we prefer one means of injecting
logical constraints over another? While all
means of injecting logical constraints do improve
upon a baseline that is oblivious to these logical
constraints, not all of them perform equally well.
Figure 2 shows that using semantic loss consis-
tently outperforms CoDL and product t-norm
across almost all data settings. We attribute such
performance improvement to semantic loss (1)
being exact, thereby avoiding the pitfalls of approx-
imations which depend heavily upon the syntax of
the logical expressions, and (2) maintaining a full
posterior distribution over possible states through-

out training, thereby incorporating the model’s
uncertainty about its predictions, rather than com-
mitting to the state most likely under the constraint.

Q3. Can constraints at inference time replace
constraints at training time? To begin with,
we focus on two sets of experiments, base-I
and CoDL-N. The results in Table 1 echo the
conclusions in Chang et al. (2007): testing with
constraints is more important than learning with
constraints, especially as more labeled data is
made available. That conclusion changes, however,
once we compare base-I and SL-N: using semantic
loss to inject constraints into the learning process
leads to better performing models compared to
base-I across all data settings.

Q4. Can we forgo constraints at inference time?
Not quite. As we can see in Table 1, learning and
inference with constraints is superior to only learn-
ing with constraints. We do also see, however, that
transductive learning is competitive with enforcing
constraints at inference time. Therefore, it is possi-
ble to avoid using ILP and use transduction instead.
This alleviates the need for implementing different
techniques, and more importantly, circumvents the
need to solve an expensive ILP at inference time.

6 Conclusion

Our work is a continuation of a long line of work
on compensating for the lack of supervision in rela-
tion extraction using symbolic domain knowledge.
We approach the problem in a principled manner:
steering the model away from its incorrect beliefs
through exactly, and efficiently tracking a distri-
bution over the model’s beliefs, and penalizing in-
correct ones. We have shown such a principled



approach to outperform competing methods in an
experimental setup where labeled data range from
extremely scarce to moderately scarce.

7 Broader Impact

Machine learning has become ubiquitous in our
lives, taking part in everything from the mundane
to the critical. These models, while achieving
record shattering performances, quite often pro-
duce logically inconsistent outputs. By devising
algorithms capable of injecting domain knowledge
into a model’s learned hypotheses, we are able to
eliminate many of these logical inconsistencies,
resulting in a more robust model. We note that,
although our experiments show more consistent
predictions, our model is in no way perfect. It is
a result of a stochastically trained neural network,
and may suffer from many of the shortcomings of
such models. That is to say, a user must be aware
of the limitations of such a system, especially when
used as a proxy for people in decision making.
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A ACE05 Full Results

# labels 3 5 10 15 25 50 75
Inf N I T N I T N I T N I T N I T N I T N I T

base 35.20.7 49.31.3 35.20.7 38.32.4 54.31.7 38.32.4 45.01.0 58.81.0 45.01.0 46.60.8 60.60.4 46.60.8 55.02.1 65.52.0 55.02.1 60.30.8 70.11.1 60.30.8 63.50.6 73.00.3 63.50.6
CoDL 38.63.4 52.23.2 36.60.6 44.13.3 56.33.1 45.36.4 48.53.0 60.31.1 49.01.6 50.01.3 61.90.3 49.62.7 58.32.6 68.4∗1.0 55.71.7 62.91.8 70.62.1 63.11.9 66.50.9 73.91.7 65.31.9
t-norm 39.05.8 50.74.8 40.44.3 45.11.6 55.80.6 42.30.8 50.35.0 58.14.9 51.42.1 53.36.7 62.14.9 56.41.1 60.40.5 67.20.5 59.22.1 63.92.3 70.42.1 65.81.2 66.52.1 73.31.7 67.01.4
sl (ours) 44.35.7 55.2∗3.0 45.42.9 52.42.4 60.9∗3.0 50.50.2 55.23.4 62.9∗2.7 56.42.5 58.91.2 66.0∗1.7 60.11.0 60.01.2 68.01.0 62.52.2 65.40.5 73.2∗0.5 68.10.9 67.20.9 74.2∗0.8 68.20.3

base 4.91.1 7.61.1 4.91.1 7.21.8 11.91.3 7.21.8 13.70.2 18.91.7 13.70.2 15.11.8 19.01.5 15.11.8 21.63.4 26.51.8 21.63.4 29.01.0 33.60.5 29.01.0 33.01.2 37.42.2 33.01.2
CoDL 7.71.2 8.91.9 4.81.1 12.83.0 14.23.5 12.36.2 16.23.1 17.73.3 17.32.7 17.61.4 18.41.8 17.72.1 27.03.7 28.33.9 22.45.0 32.91.7 34.60.7 32.42.9 37.21.4 38.51.7 35.33.7
t-norm 8.95.1 9.55.5 9.53.2 14.52.1 15.52.4 10.22.1 19.25.8 14.26.2 19.63.1 21.87.7 23.17.6 24.90.6 30.11.0 30.71.1 29.43.9 34.12.7 35.63.3 37.30.7 37.42.5 38.63.0 39.51.4
sl (ours) 12.93.1 14.03.4 14.1∗3.5 20.32.2 22.3∗3.7 18.51.5 24.64.1 25.64.5 26.2∗2.1 30.11.9 31.32.7 31.6∗0.7 29.21.7 31.90.9 33.6∗3.3 36.51.4 39.41.2 40.5∗1.3 38.81.4 42.0∗0.5 40.30.7

Table 2: Experimental results for joint entity-relation extraction on ACE05. The upper and lower sub-tables
correspond to avg-f1 and tri-f1, respectively. Inf indicates no constraints during inference (N), use of ILP during
inference (I) or the transductive setting (T). We averages across 3 different runs. Best results in a column and block
are boldface and asterisked, respectively.

B SciERC Experiments

Dataset and Evaluation Criteria We conduct further experiments using the SciERC dataset (Luan
et al., 2018), which includes annotations for scientific entities and there relations, assimilated from 12
AI conference/workshop proceedings in four AI communities from the Semantic Scholar Corpus. The
dataset defines six entity types with 7 possible relation between them.

Constraint Unlike ACE05, SciERC does not specify an ontology of entities and their permissible
relations. Therefore, our constraint is determined through procuring the set of all possible relation-subject-
object triples in the training set, and applying a threshold to eliminate all noisy labelings in the training
set.

# Labels 3 5 10 15 25 50 75
Inf N I T N I T N I T N I T N I T N I T N I T

base 25.73.7 46.12.6 25.73.7 30.67.4 50.36.6 30.67.4 34.92.0 56.62.3 34.92.0 36.93.1 58.55.1 36.93.1 43.20.9 61.62.6 43.20.9 48.92.0 65.32.4 48.92.0 50.83.2 68.21.5 50.83.2
CoDL 35.17.9 53.19.0 40.213.1 31.07.2 50.96.3 29.78.0 39.54.2 60.23.6 37.91.3 37.13.4 58.75.2 37.92.1 48.14.7 66.32.0 47.81.1 52.90.7 68.21.3 51.71.2 54.44.4 70.92.0 53.14.9
t-norm 42.33.8 59.81.9 43.31.3 46.32.0 62.3∗0.7 46.32.2 49.02.3 63.70.8 49.42.1 51.40.7 64.10.8 51.11.4 52.52.8 66.72.1 53.80.8 58.01.7 71.51.1 59.00.9 57.60.9 71.70.7 58.01.6
sl (ours) 43.03.1 60.6∗0.4 41.90.5 47.22.4 61.90.1 47.72.1 49.31.5 63.9∗0.5 50.02.0 51.81.6 65.2∗1.5 49.35.1 54.21.6 66.8∗1.6 53.74.4 62.21.2 74.0∗0.4 60.20.6 60.22.3 73.2∗2.0 61.22.5

base 2.71.1 3.10.9 2.71.1 2.91.0 3.20.8 2.91.0 3.51.8 3.91.9 3.51.8 3.61.1 4.11.8 3.61.1 8.81.0 9.81.4 8.81.0 12.33.0 13.43.3 12.33.0 12.52.6 13.72.9 12.52.6
CoDL 3.61.4 3.71.3 7.9∗5.9 3.00.9 3.40.7 2.61.3 4.12.6 4.32.6 4.62.2 3.71.1 4.31.8 3.91.6 9.43.8 9.63.9 10.12.0 14.81.2 15.51.5 14.02.0 13.83.9 14.24.1 13.15.2
t-norm 6.52.0 6.62.0 6.21.3 8.91.2 9.01.3 9.12.3 10.91.6 11.21.6 11.32.0 13.40.7 13.81.0 13.91.2 13.82.9 14.32.7 15.01.2 19.21.7 19.81.8 20.11.7 19.51.7 20.42.0 19.41.6
sl (ours) 6.71.5 6.81.6 6.51.5 10.41.9 10.61.9 11.1∗0.9 11.11.9 11.51.9 12.6∗2.0 14.11.0 14.7∗0.9 13.83.6 14.41.8 14.82.1 17.0∗3.3 23.22.3 23.5∗2.4 21.51.8 20.82.3 21.62.3 23.8∗0.7

Table 3: Experimental results for joint entity-relation extraction on sciERC. The upper and lower sub-tables cor-
respond to avg-f1 and tri-f1, respectively. Inf indicates no constraints during inference (N), use of ILP during
inference (I) or the transductive setting (T). We averages across 3 different runs. Best results in a column and block
are boldface and asterisked, respectively.

C Hyperparameters

We performed an initial grid search over optim ∈ {Adam,SGD}, learning rate ∈ {10−3, 10−2, 10−1},
batch size ∈ {32, 64, 128, 256}, semantic weight ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} and t-norm
weight ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 4} to establish a good neighborhood of hyperparameters,
which showed that while slower to converge, models trained using SGD frequently outperformed models
trained using Adam, as measured by their respective performance on the validation dataset, and that
a learning rate of 1.0 was a universally good learning rate for our architecture. Therefore, for all our
subsequent experiments, we fixed SGD as the optimizer, and 1.0 as the initial learning rate, which was
annealed by a decay rate of 0.9 for every 10 epochs that the model did not make progress, as measured
by its joint performance on the entity-relation extraction task. Every model is allowed to train for 100
epochs, with early stopping if progress is not made for 20 epochs. All experiments were conducted on a
GeForce GTX 1080 Ti GPU.



D Implementation and Training Details

Our model is implemented in PyTorch (Paszke et al., 2019) using the BERTBASE model from the PyTorch
Transformers library1. Our code makes use of the PySDD2 as well as the PyPSDD3 libraries for compiling
logical constraints into circuits which enable the efficient calculation of semantic loss.

Unlabeled Data Both semantic loss and product t-norm are provided with the entire, unlabeled corpus.
where as, inline with previous work (Chang et al., 2007), CoDL is provided as input the portion of the
corpus not contained within the labeled set.

Constraint The ACE05 specification lists all permissible relations and their arguments 4, the domain
knowledge, which we refer to as our ontology or constraint through out our paper.

1https://github.com/huggingface/transformers
2https://github.com/wannesm/PySDD
3https://github.com/art-ai/pypsdd
4https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-relations-guidelines-v5.8.3.pdf, section 3


