
Semantic Strengthening of Neuro-Symbolic Learning

Kareem Ahmed Kai-Wei Chang Guy Van den Broeck
Computer Science Department

UCLA
ahmedk@cs.ucla.edu

Computer Science Department
UCLA

kwchang@cs.ucla.edu

Computer Science Department
UCLA

guyvdb@cs.ucla.edu

Abstract

Numerous neuro-symbolic approaches have re-
cently been proposed typically with the goal of
adding symbolic knowledge to the output layer of
a neural network. Ideally, such losses maximize
the probability that the neural network’s predic-
tions satisfy the underlying domain. Unfortu-
nately, this type of probabilistic inference is often
computationally infeasible. Neuro-symbolic ap-
proaches therefore commonly resort to fuzzy ap-
proximations of this probabilistic objective, sac-
rificing sound probabilistic semantics, or to sam-
pling which is very seldom feasible. We ap-
proach the problem by first assuming the con-
straint decomposes conditioned on the features
learned by the network. We iteratively strengthen
our approximation, restoring the dependence be-
tween the constraints most responsible for de-
grading the quality of the approximation. This
corresponds to computing the mutual informa-
tion between pairs of constraints conditioned on
the network’s learned features, and may be con-
strued as a measure of how well aligned the gra-
dients of two distributions are. We show how
to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting
a minimum-cost path in Warcraft, predicting a
minimum-cost perfect matching, and solving Su-
doku puzzles, observing that it improves upon
the baselines while sidestepping intractability.

1 Introduction

Neural networks have been established as excellent feature
extractors, managing to learn intricate statistical features

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

from large datasets. However, without a notion of the sym-
bolic rules underlying any given problem domain, neural
networks are often only able to achieve decent label-level
accuracy, with a complete disregard to the structure jointly
encoded by the individual labels. These structures may en-
code, for example, a path in a graph, a matching of users to
their preferences, or even the solution to a Sudoku puzzle.

Neuro-symbolic approaches (De Raedt et al., 2020) hope
to remedy the problem by injecting into the training pro-
cess knowledge regarding the underlying problem domain,
e.g. a Sudoku puzzle is characterized by the uniqueness
of the elements of every row, column, and 3 × 3 square.
This is achieved by maximizing the probability allocated
by the neural network to outputs satisfying the rules of the
underlying domain. Computing this quantity is, in general,
a #P-hard problem (Valiant, 1979), which while tractable
for a range of practical problems (Xu et al., 2018; Ahmed
et al., 2022c), precludes many problems of interest.

A common approach is to side step the hardness of com-
puting the probability exactly by replacing logical operators
with their fuzzy t-norms, and logical implications with sim-
ple inequalities (Medina Grespan et al., 2021; van Krieken
et al., 2020). This, however, does not preserve the sound
probabilistic semantics of the underlying logical statement:
equivalent logic statements no longer correspond to the
same set of satisfying assignments, to different probability
distributions, and consequently, vastly different constraint
probabilities. On the other hand, obtaining a Monte Carlo
estimate of the probability (Ahmed et al., 2022a) is infea-
sible in exponentially-sized output spaces where the valid
outputs represent only a sliver of the distribution’s support.

In this paper, starting from first principles, we derive a
probabilistic approach to scaling probabilistic inference for
neuro-symbolic learning while retaining the sound seman-
tics of the underlying logic. Namely, we start by assuming
that the probability of the constraint decomposes, condi-
tioned on the network’s learned features. That is, we as-
sume the events encoded by the logical formula to be mu-
tually independent given the learned features, and there-
fore, joint probability factorizes as a product of probabili-
ties. This generalizes the prolific assumption that the prob-

Semantic Strengthening of Neuro-Symbolic Learning

abilities of the variables are mutually-independent condi-
tioned on the network’s learned features (Mullenbach et al.,
2018; Xu et al., 2018; Giunchiglia and Lukasiewicz, 2020)
to events over arbitrary number of atoms. This reduces
the (often intractable) problem of probabilistically satisfy-
ing the constraint, the validity of a Sudoku puzzle, to the
(tractable) problem of probabilistically satisfying the in-
dividual local constraints, e.g. the uniqueness of the el-
ements of a row, column, or square. This, however, in-
troduces inconsistencies: an assignment that satisfies one
constraint might violate another, leading to misaligned gra-
dients. More precisely, for each pair of constraints, we are
interested in the penalty incurred, in terms of modeling er-
ror, by assuming the constraints to be independent when
they are in fact dependent, conditioned on the features
learned by the neural network. This corresponds exactly
to the conditional mutual information, a quantity notori-
ously hard to calculate. We give an algorithm for tractably
computing the conditional mutual information, given that
our constraints are represented as circuits satisfying certain
structural properties. Training then proceeds, where we in-
terleave the process of learning the neural network, with
the process of semantic strengthening, where we iteratively
tightening our approximation, using the neural network to
guide us to which constraints need to be made dependent.

We test our approach on three different tasks: predict-
ing a minimum-cost path in a Warcraft terrain, predict-
ing a minimum-cost perfect matching, as well as solv-
ing Sudoku puzzles, where we observe that our approach
greatly improves upon the baselines all for a minuscule in-
crease in computation time (our experiments are capped
at 2-3, and 7 seconds per iteration for Warcraft min-
cost path, MNIST perfect matching, and Sudoku, respec-
tively), thereby sidestepping the intractability of the prob-
lem. Our code is publiclt available at github.com/UCLA-
StarAI/Semantic-Strengthening.

2 Problem Statement and Motivation

We will start by introducing the notational choices used
throughout the remainder of the paper, followed by a moti-
vation of the problem.

We write uppercase letters (X , Y) for Boolean variables
and lowercase letters (x , y) for their instantiation (Y = 0
or Y = 1). Sets of variables are written in bold upper-
case (X, Y), and their joint instantiation in bold lowercase
(x, y). A literal is a variable (Y) or its negation (¬Y).
A logical sentence (α or β) is constructed from variables
and logical connectives (∧, ∨, etc.), and is also called a
(logical) formula or constraint. A state or world y is an in-
stantiation to all variables Y. A state y satisfies a sentence
α, denoted y |= α, if the sentence evaluates to true in that
world. A state y that satisfies a sentence α is also said to
be a model of α. We denote by m(α) the set of all models

of α. The notation for states y is used to refer to an assign-
ment, the logical sentence enforcing the assignment, or the
binary output vector capturing the assignment, as these are
all equivalent notions. A sentence α entails another sen-
tence β, denoted α |= β, if all worlds that satisfy α also
satisfy β.

A Probability Distribution over Possible Structures
Let α be a logical sentence defined over Boolean variables
Y = {Y1, . . . ,Yn}. Let p be a vector of probabilities for
the same variables Y, where pi denotes the predicted prob-
ability of variable Yi and corresponds to a single output of
the neural network. The neural network’s outputs induce a
probability distribution P (·) over possible states y of Y:

P (y) =
∏

i:y|=Yi

pi

∏
i:y|=¬Yi

(1− pi). (1)

Semantic Loss The semantic loss (Xu et al., 2018) is a
function of the logical constraint α and a probability vector
p. It quantifies how close the neural network comes to sat-
isfying the constraint by computing the probability of the
constraint under the distribution P (·) induced by p. It does
so by reducing the problem of probability computation to
weighted model counting (WMC): summing up the mod-
els of α, each weighted by its likelihood under P (·). It,
therefore, maximizes the probability mass allocated by the
network to the models of α

P (α) = Ey∼P [1{y |= α}] =
∑
y|=α

P (y). (2)

Taking the negative logarithm recovers semantic loss.

Computing the above expectation is generally #P-hard
(Valiant, 1979): there are potentially exponentially many
models of α. For instance, there are 6.67 × 1021 valid
9 × 9 Sudokus (Felgenhauer and Jarvis, 2005), where as
the number of valid matchings or paths in a n × n grid
grows doubly-exponentially in the grid size (Strehl, 2001).

A common approach resorts to relaxing the logical state-
ments, replacing logical operators with their fuzzy t-norms,
and implications with simple inequalities, and come in dif-
ferent flavors: Product (Rocktäschel et al., 2015; Li and
Srikumar, 2019; Asai and Hajishirzi, 2020), Gödel (Min-
ervini et al., 2017), and Łukasiewicz (Bach et al., 2017),
which differ only in their interpretation of the logical oper-
ators. Medina Grespan et al. (2021) offer a comprehensive
theoretical, and empirical, treatment of the subject matter.

While attractive due to their tractability, t-norms suffer
from a few major drawbacks. First, they lose the precise
meaning of the logical statement, i.e. the satisfying and un-
satisfying assignments of the relaxed logical formula dif-
fer from those of the original logical formula. Second, the
logic is no longer consistent, i.e. logical statements that

Kareem Ahmed, Kai-Wei Chang, Guy Van den Broeck

m(α)
y

p(y |x)

(a) Setting where satisfying assignments
are only fraction of distribution support.

m(α)
y

p(y |x)

(b) A network allocating most of proba-
bility mass to satisfying assignments.

1

4

3 1??

?

(2,4) (4, 2)

(2,3) (3, 2)

(c) Distributions over empty entries of
Sudoku row and col modeled separately.

Figure 1: Estimating the probability of a constraint using sampling can fail when, (a) the set of satisfying assignments
represents only a minuscule subset of the distribution’s support, or, (b) when the network already largely satisfies the con-
straints, and consequently, we are very unlikely to sample very low-probability assignments violating the constraint. Using
product t-norm, (c), to model the probability of satisfying constraints reduces the problem to satisfying the constraints
locally, which can often lead to conflicting probabilities, and therefore, conflicting gradients. Here, e.g., according to the
distribution over the Sudoku row, 3 is the likely value of the cell in grey, where as, according to the distribution over the
Sudoku column, 4 is the likely value.

are otherwise equivalent correspond to different truth val-
ues, as the relaxations are a function of their syntax rather
than their semantics. Lastly, the relaxation sacrifices sound
probabilistic semantics, unlike other approaches (Xu et al.,
2018; Manhaeve et al., 2018) where the output probability
corresponds to the probability mass allocated to truth as-
signments of the logical statement, the output probability
has no sound probabilistic interpretation (Medina Grespan
et al., 2021).

A slightly more benign relaxation (Rocktäschel et al.,
2015) only assumes that, for a constraint α = β1∧ . . .∧βn,
a neural network f(·), and an input x, the events βi are
mutually independent conditioned on the features learned
by the neural network. That is, the probability of the con-
straint factorizes as P (α | f(x)) = P (β1 | f(x)) × . . . ×
P (βn | f(x)). This recovers the true probabilistic seman-
tics of the logical statement when β1, . . . , βn are over dis-
joint sets of variables, i.e. ∀i,j vars(βi) ∩ vars(βj) = ∅
for i ̸= j and can otherwise be thought of as a tractable
approximation, the basis of which is the neural network’s
ability to sufficiently encode the dependencies shared be-
tween the constraints, rendering them conditionally inde-
pendent given the learned features. That is assuming the
neural network makes almost-deterministic predictions of
the output variables given the embeddings. However, even
assuming the true function being learned is deterministic,
there is still the problem of an imperfect embedding giving
probabilistic predictions whereby clauses are dependent.

The above relaxation reduces the intractable problem of
satisfying the global constraint to the tractable problem of
satisfying the local constraints, and can therefore often lead
to misaligned gradients. Consider cell (1, 1) of the Sudoku
in Figure 1. Consider the two constraints asserting that the
elements of row 2 and that the elements of column 2 are

unique, and assume the probability distribution induced by
the network over row and column assignments are as shown
in Figure 1, right. This leads to opposing gradients for cell
(1, 1): On the one hand, the gradient from maximizing the
probability of the column constraint pushes it to 2, whereas
the gradient from maximizing the probability of the row
constraint pushes it to 4. The problem here stems from
modeling as independent two constraints that are strongly
coupled, so much so that the value of one determines the
value of the other.

Recently, Ahmed et al. (2022a) proposed using sampling
to obtain a Monte Carlo estimate of the probability of the
constraint being satisfied. This offers the convenience of
specifying constraints as PyTorch functions, as well as
accommodating non-differentiable elements in the train-
ing pipeline of the constraint, especially in cases where
the training pipeline includes non-differentiable elements.
However, when problems are intractable, this is often ac-
companied by a state space that is combinatorial in size,
meaning that the probability of sampling a valid structure
drops precipitously as a function of the size of the state
space, making it near impossible to obtain any learning sig-
nal, as almost all the sampled states will necessarily violate
our constraint. The same applies when the constraint is al-
most satisfied, meaning we never sample low-probability
assignment that violate the constraint.

That is not to mention the downfalls of gradient estimators:
the gradient estimator employed by Ahmed et al. (2022a)
is the REINFORCE gradient estimator, which while unbi-
ased in the limited of many samples, exhibits variances that
makes it very hard to learn. Even gradient estimators that
do not exhibit this problem of variance, trade off variance
for bias, making it unlikely to obtain the true gradient.

Semantic Strengthening of Neuro-Symbolic Learning

3 Semantic Strengthening

We are interested in an approach that, much like the ap-
proaches discussed in Section 2 is tractable, but retains
sound probabilistic semantics, and yields a non-zero gra-
dient when the constraint is locally, or globally, violated.

Let our constraint α be given by a conjunctive normal form
(CNF), α = β1 ∧ . . .∧βn. We start by assuming that, for a
neural network f(·), and an input x, the clauses βi are mu-
tually independent conditioned on the features learned by
the neural network i.e. the probability of the constraint fac-
torizes as P (α |f(x)) = P (β1 |f(x))× . . .×P (βn |f(x)),
where the probability of each of the clauses, P (βi), can be
computed tractably. This recovers the true probabilistic se-
mantics of the logical statement when β1, . . . , βn are over
disjoint sets of variables, i.e. ∀i,j vars(βi) ∩ vars(βj) = ∅
for i ̸= j, and can otherwise be thought of as a tractable
approximation, the basis of which is the neural network’s
ability to sufficiently encode the dependencies shared be-
tween the constraints, rendering them conditionally inde-
pendent given the learned features, again, assuming the true
function is deterministic, with no inherent uncertainty.

The above approximation is semantically sound in the
sense that, the probability of each term P (βi) accounts for
all the truth assignment of the clause βi. It is also guaran-
teed to yield a semantic loss value of 0, and therefore a zero
gradient if and only if all the clauses, βi, are satisfied.

However, as discussed in Section 2, training the neural net-
work to satisfy the local constraints can often be problem-
atic: two dependent constraints assumed independent can
often disagree on the value of their shared variables lead-
ing to opposing gradients. If we are afforded more compu-
tational resources, we can start strengthening our approxi-
mation by relaxing some of the independence assumptions
made in our model.

3.1 Deriving the Criterion

The question then becomes, which independence assump-
tions to relax. We are, of course, interested in relaxing the
independence assumptions that have the most positive im-
pact on the quality of the approximation. Or, put differ-
ently, we are interested in relaxing the independence as-
sumptions for which we incur the most penalty for assum-
ing, otherwise dependent constraints, to be independent.
For each pair of constraints βi and βj , for all i ̸= j, this cor-
responds to the Kullback-Leibler divergence of the prod-
uct of their marginals from their joint distribution, and is a
measure of the modeling error we incur, in bits, by assum-
ing the independence of the two constraints

DKL

(
P(X,Y)∥PX · PY

)
(3)

where X and Y are Bernoulli random variables, X ∼
P (βi), Y ∼ P (βj), and (X,Y) ∼ P (βi, βj), for all i, j

such that i ̸= j. Equation (3) equivalently corresponds to
the mutual information I(X;Y) given by

I(X;Y) = E(X,Y)

[
log

P(X,Y)(X,Y)

PX(X) · PY (Y)

]
, (4)

between the random variables X and Y , or the measure of
dependence between them. Intuitively, mutual information
captures the information shared between X and Y : it mea-
sures how much knowing one reduces about the uncertainty
of the other. When they are independent, then knowing one
does not give any information about the other, and there-
fore the mutual information is 0. At the other extreme, one
is a deterministic function of the other, and therefore, the
mutual information is maximized and equals to their en-
tropy. Note that the expectations in both Equation (3) and
Equation (4) are over the joint distribution P(X,Y).

We would be remiss, however, to dismiss the features
learned by the network, as they already encode some of
the dependencies between the constraints, affording us the
ability to make stronger approximations. That is, we are
interested in the mutual information between all pairs of
constraints βi, βj conditioned on the neural network’s fea-
tures. Let D be our data distribution, and Z be a random
variable distributed according to D, we are interested in
computing

I(X;Y | Z) = EZ

[
E(X,Y)|Z

[
log

P (x, y | z)
P (x | z) · P (y | z)

]]
(5)

= EZ

[
1∑

x=0

1∑
y=0

P (x, y | z)
[
log

P (x, y | z)
P (x | z) · P (y | z)

]]
,

(6)

where, as is common place, we estimate the outer expecta-
tion using Monte Carlo sampling from the data distribution.

Perhaps rather surprisingly, not withstanding the expecta-
tion w.r.t the data distribution, the quantity in Equation (5)
is hard to compute. This is not only due to the intractability
of the probability, which as we have already stated is #P-
hard in general, but also due to the hardness of conjunction,
in general. Loosely speaking, one could have constraints βi

and βj for which the probability computation, P (βi) and
P (βj) is tractable, yet computing P (α), where once again
α = βi ∧ βj , is hard (Shen et al., 2016; Khosravi et al.,
2019). Intuitively, the hardness of conjunction comes from
finding the intersection of the satisfying assignments with-
out enumeration. We formalize this in Section 3.3.

3.2 The Semantic Strengthening Algorithm

For the purposes of this section, we will assume we
can tractably compute the conditional mutual information
in Equation (5), and proceed with giving our Semantic

Kareem Ahmed, Kai-Wei Chang, Guy Van den Broeck

0.76

C

0.2

¬C

0.8
A

0.3

¬A

0.7

0.560.20

1.0 0.7

0.3

0.5

0.2

0.60

0.2

C

0.2

¬C

0.8
B

0.5

¬B

0.5

0.400.20

1.0 0.5

0.38

0.03

0.35

C ¬C

0.2 0.8

0.15

1
0.35

0.35

B ¬B

0.5 0.5

A ¬A

0.3 0.7

0.5
0.3

1 1

Figure 2: (Left) Example of two compatible constraint circuits parameterized by the outputs of a neural network. To
compute the probability of a circuit, we plug in the output of the neural network pi and 1 − pi for positive and negative
literal i, respectively. The computation proceeds bottom-up, taking products at AND gates and summations at OR gates,
and the probability is accumulated at the root of the circuit. (Right) the conjunction of the two constraint circuits, its
probability, computing the probabilities required for the mutual information using the law of total probability.

Algorithm 1 MI(β1;β2 | f(x))
Input: Two compatible constraint circuits β1 and β2

Output: Mutual Information of β1 and β2 given features
// Conjoin β1 and β2

α = β1 ∧ β2

// Compute the probability of α, β1 and β2 c.f. Figure 2
pα, pβ1 , pβ2 = prob(α), prob(β1), prob(β2)
// Calculate marginals and joint using total probability
pX = [1− pβ1

, pβ1
], pY = [1− pβ2

, pβ2
]

p(X ,Y) = [[1−pβ1
−pβ2

−pα, pβ2
−pα], [pβ1

−pα, pα]]
mi = 0
for x, y in product([0, 1]) do

mi += p(X ,Y)[x][y]× log(
p(X ,Y)[x][y]

pX [x]×pY [y])

return mi

Algorithm 2 SemanticStrengthening(constraints, κ)
Input: Current set of constraint circuits
Output: Strengthened set of constraints

pwmi = []
for β1, β2 in product(constraints) do

if disjoint(vars(βi), vars(βj)) then continue
// Keep track of constraints with mutual information

pwmi.append((MI(βi, βj), βi, βj))

// Consider only the top κ pairs of constraints
to merge = sorted(pwmi, reverse=True)[: κ]
for mi, β1, β2 in (to merge) do

constraints.remove(βi, βj)
constraints.append(βi ∧ βj)

return constraints

Strengthening algorithm. The idea is, simply put, to use the
neural network to guide the process of relaxing the inde-
pendence assumptions introduced between the constraints.
Specifically, we are given an interval, η, a constraint bud-
get, κ, and a computational budget τ . We initiate the pro-
cess of training the neural network, interrupting training
every η epochs, computing the conditional mutual infor-
mation between pairs of constraints, considering only those
pairs sharing at least one variable (e.g. the two constraints
asserting the uniqueness of the first and last row, respec-
tively, do not share variables, are therefore independent,
and by definition have a mutual information of 0, so we
need not consider joining them, yet). Subsequently, we
identify the κ pairs of constraints with the highest pairwise
conditional mutual information, and that therefore, have
the most detrimental effect on the quality of our approxi-
mation. We detect the strongly connected components of
constraints, and conjoin them: if β1 and β2 should be made
dependent, and β2 and β3 should be made dependent, then
β1 , β2 and β3 are made dependent. We delete the old con-

straints from, and add the new constraints, to our set of
constraints, and resume training. This process is repeated
every η epochs until we have exhausted our computational
budget τ . Our full algorithm is shown in Algorithm 2.

3.3 Tractably Computing the Criterion

Unlike previous approaches (Chen et al., 2018; Mesner and
Shalizi, 2019; Tezuka and Namekawa, 2021), we do not
need to resort to variational approximations or neural es-
timation to compute the mutual information, and instead
appeal to the language of tractable circuits. That is, we
appeal to knowledge compilation techniques—a class of
methods that transform, or compile, a logical theory into
a target form, tractable circuits, which represent functions
as parameterized computational graphs. By imposing cer-
tain structural properties on these computational graphs, we
enable the tractable computation of certain classes of prob-
abilistic queries over the encoded functions. As such, cir-
cuits provide us with a language for building and reasoning

Semantic Strengthening of Neuro-Symbolic Learning

about tractable representations.

Logical Circuits More formally, a logical circuit is a di-
rected, acyclic computational graph representing a logical
formula. Each node n in the DAG encodes a logical sub-
formula, denoted [n]. Each inner node in the graph is ei-
ther an AND or an OR gate, and each leaf node encodes a
Boolean literal (Y or ¬Y). We denote by in(n) the set of
n’s children, that is, the operands of its logical gate.

Structural Properties As already alluded to, circuits en-
able the tractable computation of certain classes of queries
over encoded functions granted that a set of structural prop-
erties are enforced. We explicate such properties below.

A circuit is decomposable if the inputs of every AND gate
depend on disjoint sets of variables i.e. for α = β ∧ γ,
vars(β) ∩ vars(γ) = ∅. Intuitively, decomposable AND
nodes encode local factorizations over variables of the
function. For simplicity, we assume that decomposable
AND gates always have two inputs, a condition that can
be enforced on any circuit in exchange for a polynomial in-
crease in its size (Vergari et al., 2015; Peharz et al., 2020).

A second useful property is smoothness. A circuit is
smooth if the children of every OR gate depend on the
same set of variables i.e. for α =

∨
i βi, we have that

vars(βi) = vars(βj) ∀i, j. Decomposability and smooth-
ness are a sufficient and necessary condition for tractable
integration over arbitrary sets of variables in a single pass,
as they allow larger integrals to decompose into smaller
ones (Choi et al., 2020).

Furthermore, a circuit is said to be deterministic if, for any
input, at most one child of every OR node has a non-zero
output i.e. for α =

∨
i βi, we have that βi ∧ βj = ⊥ for all

i ̸= j. Similar to decomposability, determinism induces a
recursive partitioning of the function, but over the support,
i.e. satisfying assignments, of the function, rather than the
variables. Determinism, taken together with smoothness
and decomposability, allows us to tractably compute the
probability of a constraint (Darwiche and Marquis, 2002).

What remains, is to show that we can tractably conjoin two
constraints. Conjoining two decomposable and determin-
istic circuits is NP-hard if we wish the result to also be de-
composable and deterministic, which as we mentioned is
a requirement for tractable probability computation (Dar-
wiche and Marquis, 2002; Shen et al., 2016; Khosravi
et al., 2019). To guarantee the tractability of the probabil-
ity computation of the conjoined constraint, we will, there-
fore, need to introduce one last structural property, namely
the notion of compatibility between two circuits (Vergari
et al., 2021). Two circuits, c1 and c2 over variables Y
are said to be compatible if (1) they are smooth and de-
composable, and (2) any pair of AND nodes, n ∈ c1 and
m ∈ c2 with the same scope over Y can be rearranged to

be mutually compatible and decompose in the same way
i.e. vars(n) = vars(m) =⇒ vars(ni) = vars(mi), and ni

and mi are compatible, for some arrangement of the inputs
ni and mi of n and m. A sufficient condition for compat-
ibility is that both c1 and c2 share the exact same hierar-
chical scope partitioning (Vergari et al., 2021), sometimes
called a vtree or variable ordering (Choi et al., 2020; Pipat-
srisawat and Darwiche, 2008). Intuitively, the two circuits
should share the order in which they factorize the function
over its variables. Figure 2 shows an example of smooth,
decomposable, deterministic and compatible circuits.

At a high level, there exist off-the-shelf compilers utilizing
SAT solvers, essentially through case analysis, to compile
a logical formula into a tractable logical circuit. We are ag-
nostic to the exact flavor of circuit so long as the properties
outlined herein are respected. In our experiments, we use
PySDD1 – a Python SDD compiler (Darwiche, 2011; Choi
and Darwiche, 2013).

Now that we have shown that we can tractably compute
the probabilities P (β1), P (β2) and P (α), we can utilize
the law of total probability (c.f. Figure 2) to compute the
remaining probabilities, and therefore, the mutual informa-
tion. Our algorithm is shown in Algorithm 1.

4 Related Work

There has been increasing interest in combining neural
learning with symbolic reasoning, a class of methods that
has been termed neuro-symbolic methods, studying how to
best combine both paradigms in a bid to accentuate their
positives and mitigate their negatives. The focus of many
such approaches has therefore been on making probabilis-
tic reasoning tractable through first-order approximations,
and differentiable, through reducing logical formulas into
arithmetic objectives, replacing logical operators with their
fuzzy t-norms, and implications with inequalities (Kimmig
et al., 2012; Rocktäschel et al., 2015; Fischer et al., 2019;
Pryor et al., 2022).

Diligenti et al. (2017) and Donadello et al. (2017) use first-
order logic to specify constraints on outputs of a neural
network. They employ fuzzy logic to reduce logical for-
mulas into differential, arithmetic objectives denoting the
extent to which neural network outputs violate the con-
straints, thereby supporting end-to-end learning under con-
straints. More recently, Xu et al. (2018) introduced seman-
tic loss, which circumvents the shortcomings of fuzzy ap-
proaches, while supporting end-to-end learning under con-
straints. More precisely, fuzzy reasoning is replaced with
exact probabilistic reasoning, by compiling logical formu-
lae into structures supporting efficient probabilistic queries.
Liu et al. (2023) use semantic loss to simultaneously learn a
neural network and extract generalized logic rules. Differ-

1https://github.com/wannesm/PySDD

Kareem Ahmed, Kai-Wei Chang, Guy Van den Broeck

ent from other neural-symbolic methods that require back-
ground knowledge and candidate logical rules, they aim to
induce task semantics with minimal priors.

Another class of neuro-symbolic approaches have their
roots in logic programming. DeepProbLog (Manhaeve
et al., 2018) extends ProbLog, a probabilistic logic pro-
gramming language, with the capacity to process neural
predicates, whereby the network’s outputs are construed as
the probabilities of the corresponding predicates. This sim-
ple idea retains all essential components of ProbLog: the
semantics, inference mechanism, and the implementation.
Manhaeve et al. (2021) attempts to scale DeepProbLog by
considering only the top-k proof paths. In a similar vein,
Dai et al. (2018) combine domain knowledge specified as
purely logical Prolog rules with the output of neural net-
works, dealing with the network’s uncertainty through re-
vising the hypothesis by iteratively replacing the output of
the neural network with anonymous variables until a con-
sistent hypothesis can be formed. Bošnjak et al. (2017)
present a framework combining prior procedural knowl-
edge, as a Forth program, with neural functions learned
through data. The resulting neural programs are consistent
with specified prior knowledge and optimized with respect
to data.

There has recently been a plethora of approaches ensuring
consistency by embedding the constraints as predictive lay-
ers, including semantic probabilistic layers (SPLs) (Ahmed
et al., 2022b), MultiplexNet (Hoernle et al., 2022) and HM-
CCN (Giunchiglia and Lukasiewicz, 2020). Much like se-
mantic loss (Xu et al., 2018), SPLs maintain sound prob-
abilistic semantics, and while displaying impressive scala-
bility to real world problems, but might struggle with en-
coding harder constraints. SIMPLE (Ahmed et al., 2023)
proposes an SPL for the k-subset distribution, to be used
as a latent space to induce a distribution over features, for
which they derive a low-bias, low-variance gradient esti-
mator. MultiplexNet is able to encode only constraints in
disjunctive normal form, which is problematic for gener-
ality and efficiency as neuro-symbolic tasks often involve
an intractably large number of clauses. HMCCN encodes
label dependencies as fuzzy relaxation and is the current
state-of-the-art model for hierarchical mutli-label classifi-
cation (Giunchiglia and Lukasiewicz, 2020), but, similar to
its recent extension (Giunchiglia and Lukasiewicz, 2021),
is restricted to a certain family of constraints. Daniele et al.
(2022) discusses how to enforce the consistency for fuzzy
relaxations with general formulas.

5 Experimental Evaluation

We evaluated our approach, semantic strengthening, on
several neuro-symbolic tasks, namely Warcraft minimum-
cost path finding, minimum-cost perfect matching of
MNIST digits, as well as the task of training neural net-

works to solve Sudoku puzzles. The challenge with all of
the above tasks, when looked at through a neuro-symbolic
lens, is the vastness of the state space: as previously men-
tioned, there are 6.6 × 1021 valid 9 × 9 Sudokus, and the
number of valid matchings, or paths in a grid grows doubly-
exponentially in the grid size—simply too much to enu-
merate. Even approaches like semantic loss which rely on
circuit approaches to exploit the local structure in the prob-
lem, essentially through caching solutions to repeated sub-
problems, do not scale to large instances of these tasks.

As has been established in previous work (Xu et al., 2018;
Ahmed et al., 2022c,b), label-level accuracy, or the accu-
racy of predicting individual labels is very often a poor in-
dication of the performance of the neural network, and is
often uninteresting in neuro-symbolic settings, where we
are rather more interested in the accuracy of our predicted
structure object exactly matching the ground truth, e.g., is
the prediction a shortest path?, a metric which we denote
“Exact” in our experiments, as well as the accuracy of pre-
dicting objects that are consistent with the constraint, e.g.,
is the prediction a valid path?, a metric which we denote
“Consistent” in our experiments. Note that, unlike the other
two tasks, for the case of Sudoku, these measures are one
and the same: a valid Sudoku has a single unique solution.

In all of our experiments, we compare against two base-
lines: a neural network, whose architecture we specify in
the corresponding experimental section, and the same neu-
ral network augmented with product t-norm, where we as-
sume the independence of constraints throughout training.

Warcraft Shortest Path We evaluate our approach, se-
mantic strengthening, on the challenging task of predicting
the minimum-cost path in a weighted grid imposed over
Warcraft terrain maps. Following Pogančić et al. (2020),
our training set consists of 10, 000 terrain maps curated us-
ing the Warcraft II tileset. Each map encodes an underlying
grid of dimension 12 × 12, where each vertex is assigned
a cost depending on the type of terrain it represents (e.g.
earth has lower cost than water). The shortest (minimum
cost) path between the top left and bottom right vertices is
encoded as an indicator matrix, and serves as label. Fig-
ure 3 shows an example input presented to the network and
the input with an annotated shortest path as a groundtruth.
Presented with an image of a terrain map, a convolutional
neural network—similar to Pogančić et al. (2020), we use
ResNet18 (He et al., 2016)—outputs a 12× 12 binary ma-
trix indicating a set of vertices. Note that the minimum-cost
path is not unique: there may exist several paths sharing the
same minimum cost, all of which are considered to be cor-
rect by our metrics. Table 1 shows our results.

We observe that incorporating constraints into learning im-
proves the accuracy of predicting the optimal path from
44.80% to 50.40%, and the accuracy of predicting a valid
path from 56.90% to 63.20%, as denoted by the “Ex-

Semantic Strengthening of Neuro-Symbolic Learning

Figure 3: An example of a Warcraft terrain map (left) and an MNIST grid, and the corresponding groundtruth labels.

Table 1: Warcraft shortest path prediction results

Test accuracy % Exact Consistent

ResNet-18 44.80 56.90

+ Product t-norm 50.40 63.20
+ Semantic Strengthening 61.20 72.70

act” and “Consistent” metrics, respectively. Furthermore,
and perhaps more interestingly, we see that our approach,
semantic strengthening, greatly improves upon the base-
line, as well as product t-norm improving the accuracy of
predicting the optimal path from 44.80% and 50.40% to
61.20%, while greatly improving the accuracy of predict-
ing a valid path from 56.90% and 63.20% to 72.70%.

MNIST Perfect Matching Our next task consists in pre-
dicting a minimum-cost perfect-matching of a set of k2

MNIST digits arranged in a k × k grid, where diagonal
matchings are not permitted. We consider the problem
for the instance when k = 10. Similar to Pogančić et al.
(2020), we generate the ground truth by considering the
underlying k×k grid graph, and solving a min-cost perfect-
matching problem using Blossom V (Kolmogorov, 2009),
where the edge weights are given simply by reading the two
vertex digits as a two-digit number, reading downwards for
vertical edges, and left to right for horizontal edges. The
minimum-cost perfect matching label is then encoded as an
indicator vector for the subset of the selected edges. Simi-
lar to the Warcraft experiment, the grid image is input to a
(pretrained) ResNet-18, which simply outputs a set of pre-
dicted edges. Table 2 shows our results.

Table 2: Perfect Matching prediction test results

Test accuracy % Exact Consistent

ResNet-18 9.30 10.00

+ Product t-norm 12.70 12.90
+ Semantic Strengthening 15.50 18.40

Similar to the Warcraft experiment, we observe that in-
corporating constraints into learning improves the accu-
racy of predicting the optimal perfect matching from 9.30%

to 12.70%, and the accuracy of predicting a valid per-
fect matching from 10.00% to 12.90%, as denoted by the
“Exact” and “Consistent” metrics, respectively. Further-
more, we see that our approach, semantic strengthening,
greatly improves upon the baseline, as well as product t-
norm improving the accuracy of predicting the optimal per-
fect matching from 09.30% and 12.70% to 15.50%, while
greatly improving the accuracy of predicting a valid perfect
matching from 10.00% and 12.90% to 18.40%.

Sudoku Lastly, we consider the task of predicting a so-
lution to a given Sudoku puzzle. Here the task is, given a
9 × 9 partially-filled grid of numbers to fill in the remain-
ing cells in the grid such that the entries each row, column,
and 3 × 3 square are unique i.e. each of the numbers from
1 through 9 appears exactly once.

We use the dataset provided by Wang et al. (2019), consist-
ing of 10K Sudoku puzzles, split into 9K training examples,
and 1K test samples, all puzzles having 10 missing entries.

As our baseline, we follow Wang et al. (2019) in using
a convolutional neural network modeled on that of Park
(2018). The input to the neural network is given as a bit rep-
resentation of the initial Sudoku board, along with a mask
representing the bits to be learned, i.e. the bits in the empty
Sudoku cells. The network interprets the bit inputs as 9 in-
put image channels (one for each square in the board) and
uses a sequence of 10 convolutional layers (each with 512
3×3 filters) to output the solution, with the mask input as a
set of additional image channels in the same format as the
board. Table 3 shows our results.

Table 3: Sudoku test results

Test accuracy % Exact Consistent

10-Layer ConvNet 16.80 16.80

+ Product t-norm 22.10 22.10
+ Semantic Strengthening 28.00 28.00

In line with our previous experiments, we observe that in-
corporating constraints into learning improves the accuracy
of predicting correct Sudoku solutions, the “Exact” metric
from 16.80% to 22.10%. Furthermore, we see that our ap-

Kareem Ahmed, Kai-Wei Chang, Guy Van den Broeck

proach, semantic strengthening, greatly improves upon the
baseline, as well as product t-norm, improving the accuracy
from 16.80% and 22.10% to 28.00%.

6 Conclusion

In conclusion, we proposed semantic strengthening, a
tractable approach to neuro-symbolic learning, that re-
mains faithful to the probabilistic semantic of the distribu-
tion defined by the neural network on a given constraint.
Semantic strengthening starts by assuming the indepen-
dence of the clauses in a given constraint, thereby reduc-
ing the, often intractable, problem of satisfying a global
constraint, to the tractable problem of satisfying individual
local constraints. It uses a principled criterion, conditional
mutual information, to determine, and relax any unjustified
independence assumptions most detrimental to the quality
of our approximation. We have shown that we are able
to greatly improve upon the baselines on three challenging
tasks, where semantic strengthening was able to increase
the accuracy and consistency of the model’s predictions.

Acknowledgements

KA would like to thank Arthur Choi and Yoojung Choi
for helpful discussions throughout the project. This work
was funded in part by the DARPA Perceptually-enabled
Task Guidance (PTG) Program under contract number
HR00112220005, and NSF grants #IIS-1943641, #IIS-
1956441, and #CCF-1837129.

References

Ahmed, K., Li, T., Ton, T., Guo, Q., Chang, K.-W.,
Kordjamshidi, P., Srikumar, V., Van den Broeck, G.,
and Singh, S. (2022a). Pylon: A pytorch framework
for learning with constraints. In Proceedings of the
36th AAAI Conference on Artificial Intelligence (Demo
Track).

Ahmed, K., Teso, S., Chang, K.-W., Van den Broeck, G.,
and Vergari, A. (2022b). Semantic probabilistic layers
for neuro-symbolic learning. In NeurIPS.

Ahmed, K., Wang, E., Chang, K.-W., and Van den Broeck,
G. (2022c). Neuro-symbolic entropy regularization. In
The 38th Conference on Uncertainty in Artificial Intelli-
gence.

Ahmed, K., Zeng, Z., Niepert, M., and Van den Broeck,
G. (2023). SIMPLE: A gradient estimator for k-subset
sampling. In ICLR.

Asai, A. and Hajishirzi, H. (2020). Logic-Guided Data
Augmentation and Regularization for Consistent Ques-
tion Answering. In ACL.

Bach, S. H., Broecheler, M., Huang, B., and Getoor, L.
(2017). Hinge-loss markov random fields and probabilis-
tic soft logic. JMLR.

Bošnjak, M., Rocktäschel, T., Naradowsky, J., and Riedel,
S. (2017). Programming with a differentiable forth inter-
preter. In Proceedings of the 34th ICML.

Chen, J., Song, L., Wainwright, M., and Jordan, M. (2018).
Learning to explain: An information-theoretic perspec-
tive on model interpretation. In Dy, J. and Krause, A.,
editors, Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 883–892. PMLR.

Choi, A. and Darwiche, A. (2013). Dynamic minimiza-
tion of sentential decision diagrams. In Proceedings of
the Twenty-Seventh AAAI Conference on Artificial Intel-
ligence, AAAI’13, page 187–194. AAAI Press.

Choi, Y., Vergari, A., and Van den Broeck, G. (2020). Prob-
abilistic circuits: A unifying framework for tractable
probabilistic modeling.

Dai, W.-Z., Xu, Q.-L., Yu, Y., and Zhou, Z.-H. (2018). Tun-
neling neural perception and logic reasoning through ab-
ductive learning.

Daniele, A., van Krieken, E., Serafini, L., and Harmelen,
F. V. (2022). Refining neural network predictions using
background knowledge. ArXiv, abs/2206.04976.

Darwiche, A. (2011). Sdd: A new canonical representation
of propositional knowledge bases. In IJCAI.

Darwiche, A. and Marquis, P. (2002). A knowledge com-
pilation map. JAIR.

De Raedt, L., Dumančić, S., Manhaeve, R., and Marra, G.
(2020). From statistical relational to neuro-symbolic ar-
tificial intelligence. In IJCAI.

Diligenti, M., Gori, M., and Saccà, C. (2017). Semantic-
based regularization for learning and inference. Artificial
Intelligence.

Donadello, I., Serafini, L., and d’Avila Garcez, A. (2017).
Logic tensor networks for semantic image interpretation.
In IJCAI.

Felgenhauer, B. and Jarvis, F. (2005). Enumerating possi-
ble sudoku grids.

Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T.,
Zhang, C., and Vechev, M. (2019). DL2: Training and
querying neural networks with logic. In ICML.

Giunchiglia, E. and Lukasiewicz, T. (2020). Coherent hier-
archical multi-label classification networks. Advances in
Neural Information Processing Systems, 33:9662–9673.

Giunchiglia, E. and Lukasiewicz, T. (2021). Multi-label
classification neural networks with hard logical con-
straints. Journal of Artificial Intelligence Research,
72:759–818.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In CVPR.

Semantic Strengthening of Neuro-Symbolic Learning

Hoernle, N., Karampatsis, R.-M., Belle, V., and Gal, Y.
(2022). Multiplexnet: Towards fully satisfied logical
constraints in neural networks. In AAAI.

Khosravi, P., Choi, Y., Liang, Y., Vergari, A., and Van den
Broeck, G. (2019). On tractable computation of expected
predictions. In Advances in Neural Information Process-
ing Systems 32 (NeurIPS).

Kimmig, A., Bach, S., Broecheler, M., Huang, B., and
Getoor, L. (2012). A short introduction to probabilis-
tic soft logic. In Proceedings of the NIPS Workshop on
Probabilistic Programming: Foundations and Applica-
tions.

Kolmogorov, V. (2009). Blossom v: a new implementation
of a minimum cost perfect matching algorithm. Mathe-
matical Programming Computation, 1:43–67.

Li, T. and Srikumar, V. (2019). Augmenting neural net-
works with first-order logic. In ACL.

Liu, A., Xu, H., Van den Broeck, G., and Liang, Y.
(2023). Out-of-distribution generalization by neural-
symbolic joint training. In Proceedings of the 37th AAAI
Conference on Artificial Intelligence.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T.,
and De Raedt, L. (2018). Deepproblog: Neural proba-
bilistic logic programming. In NeurIPS.

Manhaeve, R., Marra, G., and De Raedt, L. (2021). Ap-
proximate Inference for Neural Probabilistic Logic Pro-
gramming. In Proceedings of the 18th International
Conference on Principles of Knowledge Representation
and Reasoning, pages 475–486.

Medina Grespan, M., Gupta, A., and Srikumar, V. (2021).
Evaluating relaxations of logic for neural networks: A
comprehensive study. In Zhou, Z.-H., editor, Proceed-
ings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pages 2812–2818. In-
ternational Joint Conferences on Artificial Intelligence
Organization. Main Track.

Mesner, O. C. and Shalizi, C. R. (2019). Conditional mu-
tual information estimation for mixed discrete and con-
tinuous variables with nearest neighbors. arXiv: Statis-
tics Theory.

Minervini, P., Demeester, T., Rocktäschel, T., and Riedel,
S. (2017). Adversarial sets for regularising neural link
predictors. In UAI.

Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., and Eisen-
stein, J. (2018). Explainable prediction of medical codes
from clinical text. arXiv preprint arXiv:1802.05695.

Park, K. (2018). Can convolutional neural networks
crack sudoku puzzles? https://github.com/
Kyubyong/sudoku.

Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina,
A., Trapp, M., Van den Broeck, G., Kersting, K., and

Ghahramani, Z. (2020). Einsum networks: Fast and scal-
able learning of tractable probabilistic circuits. In Inter-
national Conference of Machine Learning.

Pipatsrisawat, K. and Darwiche, A. (2008). New compila-
tion languages based on structured decomposability. In
AAAI, volume 8, pages 517–522.

Pogančić, M. V., Paulus, A., Musil, V., Martius, G., and
Rolinek, M. (2020). Differentiation of blackbox combi-
natorial solvers. In ICLR.

Pryor, C., Dickens, C., Augustine, E., Albalak, A., Wang,
W. Y., and Getoor, L. (2022). Neupsl: Neural probabilis-
tic soft logic.

Rocktäschel, T., Singh, S., and Riedel, S. (2015). Injecting
logical background knowledge into embeddings for rela-
tion extraction. In Proceedings of the 2015 Conference
of the NAACL.

Shen, Y., Choi, A., and Darwiche, A. (2016). Tractable
operations for arithmetic circuits of probabilistic mod-
els. In Lee, D., Sugiyama, M., Luxburg, U., Guyon, I.,
and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc.

Strehl, V. (2001). Counting domino tilings of rectan-
gles via resultants. Advances in Applied Mathematics,
27(2):597–626.

Tezuka, T. and Namekawa, S. (2021). Information bot-
tleneck analysis by a conditional mutual information
bound. Entropy, 23.

Valiant, L. (1979). The complexity of computing the per-
manent. Theoretical Computer Science.

van Krieken, E., Acar, E., and Harmelen, F. V. (2020).
Analyzing differentiable fuzzy logic operators. ArXiv,
abs/2002.06100.

Vergari, A., Choi, Y., Liu, A., Teso, S., and Van den
Broeck, G. (2021). A compositional atlas of tractable cir-
cuit operations for probabilistic inference. In NeurIPS.

Vergari, A., Di Mauro, N., and Esposito, F. (2015). Simpli-
fying, regularizing and strengthening sum-product net-
work structure learning. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases.

Wang, P., Donti, P. L., Wilder, B., and Kolter, J. Z. (2019).
Satnet: Bridging deep learning and logical reasoning us-
ing a differentiable satisfiability solver. In ICML, vol-
ume 97 of Proceedings of Machine Learning Research,
pages 6545–6554. PMLR.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Van den
Broeck, G. (2018). A semantic loss function for deep
learning with symbolic knowledge. In Proceedings of
the 35th ICML 2018.

https://github.com/Kyubyong/sudoku
https://github.com/Kyubyong/sudoku

	Introduction
	Problem Statement and Motivation
	Semantic Strengthening
	Deriving the Criterion
	The Semantic Strengthening Algorithm
	Tractably Computing the Criterion

	Related Work
	Experimental Evaluation
	Conclusion

